

12. 雙曲線 xy - 3x + 4y = 0 兩頂點的距離為何?

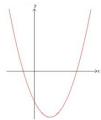
1	2	3	4	5	6	7	8	9	10
С	D	A	В	C	D	C	A	Е	В
11	12	13	14	15	16	17	18	19	20
Α	Е	С	В	D	Е	В	D	Е	A

- 1. $\dot{\pi}$ 名 , β 為方程式 $x^2 + 12x + 9 = 0$ 的雨根,則 $(\sqrt{\alpha} \sqrt{\beta})^2 = ?$
- (B) 6
- (C)6
- (D)12
- b + 2c = ?
 - (A) 5

- (D)5
- (E)7
- 3. $\not\equiv \frac{8x^3 6x + 1}{(2x+1)^4} = \frac{a}{(2x+1)} + \frac{b}{(2x+1)^2} + \frac{c}{(2x+1)^3} + \frac{d}{(2x+1)^4}$,

- (A)-2 (B)-1
- (C) 0
- (D)1
- (E)2

- 4. $x^2 4x + 2 \le |x 2|$ 之解為何?
 - (A) $1 \le x \le 4$ (B) $2 \le x \le 4$
- (C) $0 \le x \le 2$ (D) $0 \le x \le 4$ (E) $0 \le x \le 3$


- $2\log_{x} x \log_{x} 2 < 1$ 之解為何?

 - (A) $x < -\frac{1}{2}$ $\le 0 < x < 1$ (B) $0 < x < \frac{1}{2}$ $\le 1 < x < 2$ (C) $x < -\frac{1}{\sqrt{2}}$ $\le 0 < x < 1$

 - (D) $x < -\frac{1}{\sqrt{2}}$ $\le 1 < x < 2$ (E) $0 < x < \frac{1}{\sqrt{2}}$ $\le 1 < x < 2$
- 已知 $\triangle ABC$ 中, $\overline{AB} = 37$, $\overline{BC} = 53$, $\overline{AC} = 89$,則下列各內積中,何者為最大?
 - (A) $\overline{AB} \cdot \overline{AC}$
- (B) $\overline{BC} \cdot \overline{BA}$ (C) $\overline{CA} \cdot \overline{CB}$ (D) $\overline{AB} \cdot \overline{BC}$ (E) $\overline{BC} \cdot \overline{CA}$

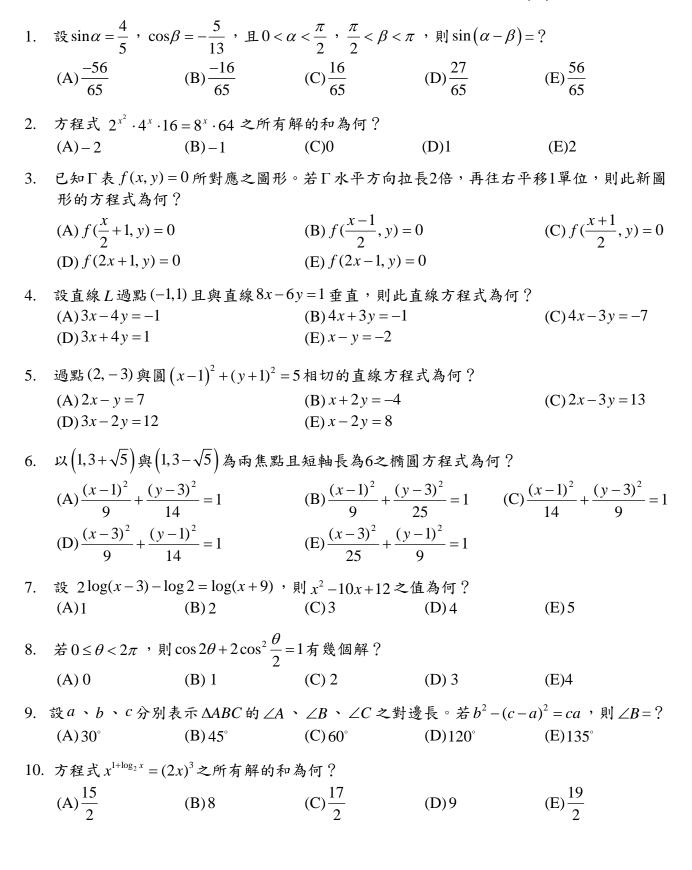
- 7. 已知向量 $\overline{AB} = (-31, 29)$, $\overline{AC} = (23, -11)$, 則下列向量長中, 何者為最大?
 - (A) $|\overline{AB}|$ (B) $|\overline{BC}|$ (C) $|\overline{AB} + \overline{BC}|$ (D) $|\overline{AB} + \overline{AC}|$ (E) $|\overline{AB} + \overline{BC} + \overline{CA}|$

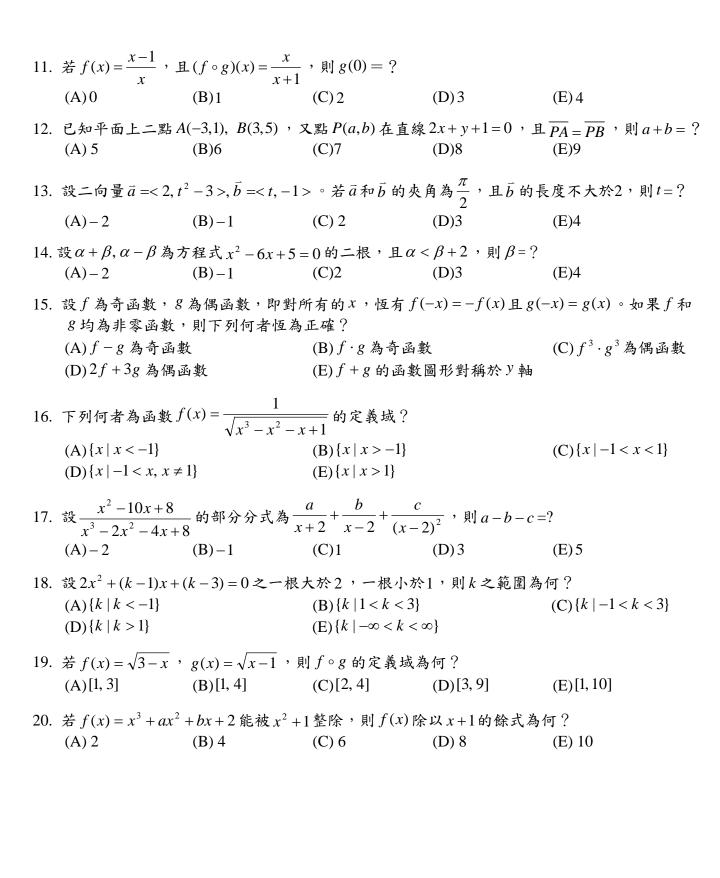
- 8. 設 $y = ax^2 + bx + c$ 的圖形如下,則下列各式中,何者為負值?

- (A) abc (B) $b^2 4ac$ (C) $c^2 4ab$ (D) $b + \sqrt{b^2 4ac}$ (E) $b \sqrt{b^2 4ac}$
- 9. 已知 $4x^2 + y^2 4x + 8y = 8$,則x的最大值為何?
- (B) 2
- (D) 4
- (E) 5

- 10. 拋物線 $y = 4 2x x^2$ 與 x 軸兩交點的距離為何?
 - (A) 2
- (B) 3
- (C) $2\sqrt{5}$
- (D) 6
- (E) 8

11.	設雙曲線 x²-	$y^2 = x + 2y \text{ 雨漸}$	近線的夾角為 $ heta$,則 $\sin \frac{\theta}{2} = ?$	
	(A) 0	$(B)\frac{1}{\sqrt{2}}$	$(C)\frac{\sqrt{3}}{2}$	$(D)\frac{2}{\sqrt{5}}$	(E) 1
12.	不等式 $\frac{3\cdot 2^x - 1}{2^x - 1}$	18·2 ^{-x} 2 ^{-x} ≤2之解為作	可?		
	$(A) - 1 \le x \le 1$	$(\mathbf{B})0 < x \le 1$	(C) $1 \le x \le 2$	(D) $0 < x \le 2$	$(E) 1 \le x \le 4$
13.	方程式10·x ^{2lo}	gx = x ³ 之所有實材	艮的平方和為何?		
	(A)100	(B) 101	(C) 110	(D) 111	(E) 121
14.	若 $f(x) = \log_2(x)$	$x^3 + x^2 - 7x + 5$) , §	$0 f(1+\sqrt{2}) = ?$		
	(A) 1	(B) 2	(C) 3	(D) 4	(E) 5
15.	設 $\cos\theta + \cos^2$	$\theta = 1$,則 $\sin^2 \theta$ +	$-\sin^4\theta = ?$		
	$(A)\frac{1}{4}$	$(B)\frac{1}{3}$	$(C)\frac{1}{2}$	$(D)\frac{\sqrt{3}}{2}$	(E)1
16.	設 $\tan 100^{\circ} = k$,則 $\sin 80^{\circ} = ?$			
	$(A)\frac{-k}{\sqrt{1+k^2}}$	$(B)\frac{\sqrt{k}}{\sqrt{1+k^2}}$	$(C)\frac{-1}{\sqrt{1+k^2}}$	$(D)\frac{k}{\sqrt{1+k^2}}$	$(E)\frac{1}{\sqrt{1+k^2}}$
17.	設 $a = \sec 434^\circ$	$b = \sin 100^{\circ}$	$c = \cos 260^{\circ} \cdot d =$	$\cot 28^{\circ} \cdot e = \csc$	155°,則下列
	何者正確?				
	(A) $b < c < d$	< e < a (B) $c < b$	0 < d < e < a (C)	c < b < e < d < c	a
	(D) $c < b < d <$	a < e (E) $b < c < e$	< a < d < e		
18.	平面上有兩點	A(1,2), B(a,b),	若直線 <u></u> 若直線 <i>AB</i> 之垂直	直平分線為 x+2y	y-10=0,則
	a-b=?				
		(B) - 2	(C) - 3	(D) - 4	(E) - 5
19.	` '	$a - ab = 0, \ a > 0, \ b$	` /	` '	` ′
	•	為2的三角形,		,_ ,_ ,	- 100 100 20
		(B) $-6 - 3\sqrt{3}$		(D) $-4 - 3\sqrt{3}$	$(E) - 3 - 3\sqrt{3}$
20.	, ,	=1與 $x+3y=2$ 之	` '	, ,	(2) 0 0 0
	•	(B) $\frac{-6}{25}$			$(E)\frac{-3}{25}$
	25	25	5	25	25


1	2	3	4	5	6	7	8	9	10
В	A	Е	D	Е	С	В	Е	C	C
11	12	13	14	15	16	17	18	19	20
В	D	С	С	Е	Α	В	С	С	A


1.	設 $\sin \alpha = \frac{1}{3}$, $\cos \beta = \frac{1}{3}$	$= \frac{2}{3} \mathbb{L} \frac{\pi}{2} < \alpha < \pi, \frac{\pi}{2}$	$\frac{\pi}{2} < \beta < 0$, $\sharp \sin(\alpha)$	$(\alpha + \beta) = ?$	
	(A) 1	$(B)\frac{2-2\sqrt{10}}{9}$	$(C)\frac{2+2\sqrt{10}}{9}$	$(D)\frac{4\sqrt{2}-\sqrt{5}}{9}$	$(E)\frac{2-2\sqrt{2}}{3}$
2.	$\sin\frac{5\pi}{3}\tan(\frac{-\pi}{4})\cos$	$\frac{5\pi}{6} = ?$			
	$(A)\frac{-3}{4}$	$(B)\frac{-\sqrt{3}}{4}$	(C) $\frac{-1}{4}$	(D) $\frac{1}{4}$ (E)	$\frac{\sqrt{3}}{4}$
3.	設 α , β 為方程式 x	$x^2 - 2kx + k^2 + k = 0$	丙負根,且 $lpha^2+eta^2$	= 24 ,則 $k = ?$	
	(A) - 4	(B) - 3	(C)-2	(D) 2	(E) 4
4.	取適當 k 值,使圓	$x^2 + y^2 - 2kx - 4y +$	$2k^2 = 6k$ 的面積最	大,問此時圓面積為	為何?
	$(A)10\pi$	(B) 11π	$(C)12\pi$	(D) 13π	$(E)14\pi$
5.	設 $P(x, y)$, $A(1, -1)$,	B(1,1), C(4,-1) ,滿	$\cancel{E} \overline{PA}^2 + \overline{PB}^2 + 2\overline{PC}$	· ² 為最小,則x+y	=?
	(A) 1	(B) 2	(C) 3	(D) 4	(E) 5
6.	已知 A(-1,-4), B(3	3,5) 兩點,又 <i>C</i> 在直	[線 x+y=0上移動	,則 $\overline{AC}+\overline{BC}$ 的最	小值為何?
	$(A)\sqrt{97}$	(B)10	$(C) 5\sqrt{5}$	(D)12	(E)14
7.	四邊形 ABCD 中,	$\overline{AB} = \overline{CD} = 5, \overline{BC} =$	$=2,\overline{BC}<\overline{AD}$,且2	$\angle ABC = \angle ADC = 60$)°,則 \overline{AD} =?
	(A) 3	(B) 5	(C) 6	(D) 8	(E) 9
8.	點(-3,1)與拋物線	$y^2 - 2y + 5 = 2x \text{ if } 3$	最短距離為何?		
	(A) 4	$(B)\sqrt{17}$	(C) $3\sqrt{2}$	(D) 5	(E) $5\sqrt{5}$
9.	設橢圓 $x^2 + 4y^2 - 2$	2x = 3之長軸長為 A	I,短軸長為 B ,則	A + B = ?	
	(A) $1 + \sqrt{3}$	(B) 3	(C) 4	(D) 5	(E) 6
10.	若 $f(x) = x^3 + ax^2 +$	$11x + 6 \not= g(x) = x^3$	$+bx^{2}+14x+8有二$	次公因式,則 $a+b$	r=?
	(A)13	(B)14	(C)15	(D)16	(E)17
11.	$ \div 5.25^x + 350.5^{x-1} $	$x^2 = 3$, $y = 2$			
	(A) -2	(B) -1	(C) 0	(D) 1	(E) 2
12.	若 $a = \log 2, b = \log$	3 ,则 $\log_{12} 180 = ?$			
	(A)1-a+b	(B) $\frac{1+a^2+b^2}{a^2+b}$	$(C)\frac{a+2b+1}{2a+b}$	$(D)\frac{2a+2b+1}{2a+b}$	$(E)\frac{2a+2b-1}{2a+b}$
13.	求曲線 $y = -\sqrt{12}$	-x(x+4) 與 x 軸戶	斤圍的區域面積為信	可?	
	$(A) 4\pi$	(B) 5π	$(C) 6\pi$	(D) 7π	$(E) 8\pi$
14.	方程式 log(x+1)+	$-\log(x+3) - 1 = \log(x+3)$	(x+2)的解為何?		
	$(A) 5 - \sqrt{26}$	(B) $3 - \sqrt{26}$	$(C)1-\sqrt{26}$	(D) $3 + \sqrt{26}$	(E) $5 + \sqrt{26}$

15.	读 $\frac{2x^2 - x + 4}{x^3 + 4x} = \frac{A}{x} + \frac{A}{x}$	$-\frac{Bx+C}{x^2+4} , \not \exists A+2$	2B+C=?		
	(A) 3	(B) 4	(C) 5	(D) 6	(E) 7
16.	已知兩平面向量॥=	$=<3,-4>$ $\stackrel{-}{\text{M}}_{v}=< x,$	y>。若v可使u與	· v的內積值最大,且	$\left \stackrel{-}{v} \right = 2$, $\exists v \in \mathbb{N}$
	3	3	$(C)\frac{4}{5}$	(D)1	$(E)\frac{6}{5}$
17.	不等式 $\frac{x-7}{(x-1)^2} \le -1$	的解為何?			
	$(A) 3 \le x$	(B) $x \le -2$	(C)	-2≤x<1或1 <x≤3< td=""><td>3</td></x≤3<>	3
	(D) $-2 \le x \le 3$	(E) $x \le -2$ 或	$3 \le x$		
18.	設x,y均為正數,且	$1.3x + y = 10 , \cancel{y} x$	³ y ² 的最大值為何?		
	(A) 108	(B) 116	(C)122	(D) 128	(E) 134
19.	設 $A(x, y)$, $B(-1, 4)$,	$C(5,-4)$,且 ΔAB	C的重心坐標為(2,	(x-1) ,则 $x-y=?$	
	(A) 1	(B) 2	(C)3	(D) 4	(E) 5
20.	平面上2 x +3 y	≤6所表示區域的面	積為何?		
	(A) 4	(B) 8	(C) 12	(D) 16	(E) 32

1	2	3	4	5	6	7	8	9	10
С	A	В	D	В	A	A	D	Е	A
11	12	13	14	15	16	17	18	19	20
В	С	Е	D	В	Е	С	D	Е	С

101學年度四技新生基礎數學第二次測驗(A)

1	2	3	4	5	6	7	8	9	10
A	D	В	D	Е	A	C	D	C	С
11	12	13	14	15	16	17	18	19	20
В	С	В	C	В	D	Е	A	Е	A

		, , , , , , ,		- • • • • • •	
1.	若 $\log(x-9) + \log(x$ (A) 9	$(x-5) = \log 4 + \log(6)$ (B)10	25-2x),則 x=? (C)11	(D)12	(E)13
2.	已知 $\frac{3\pi}{2} < \alpha < 2\pi$	$\pi, \pi < \beta < \frac{3\pi}{2}$ 。若	$\sin \alpha = -\frac{3}{5}, \tan \beta = \frac{1}{3}$,則 $\sin(\alpha+\beta)=$?
	$(A)\frac{\sqrt{10}}{10}$	$(B)\frac{2\sqrt{10}}{10}$	$(C)\frac{3\sqrt{10}}{10}$	$(D)\frac{\sqrt{15}}{10}$	$(E)\frac{\sqrt{17}}{10}$
3.	已知ā與Б為兩向	量, $\left \vec{a} \right = \left \vec{b} \right , \left \vec{a} + \vec{b} \right $	$ \vec{b} = 4 \mathbb{E} \vec{a} - \vec{b} = 3 \circ \hat{\lambda}$	吉ā與δ之夾角為β	, 則 cos θ =
			$(C)\frac{1}{5}$		
4.	若△ABC 中,ĀB (A)30°		2 且 ∠ B = 30°,則 ∠. (C)60°	A = ? (D)90°	(E) 120°
5.	下列敘述何者正確 (A) $f(x) = \sqrt[3]{x+1}$ 的 (C) $f(x) = \sqrt[3]{x+1}$ 的 (E) $g(x) = \sqrt{x+1}$ 的]定義域為(-1,∞)]值域為[1,∞)	(B) $f(x) = \sqrt[3]{x+1}$ (D) $g(x) = \sqrt{x+1}$	的定義域為[-1,∞) 的定義域為[-1,∞)	
6.		$\frac{+3}{(2x-1)} + \frac{a}{(2x-1)} + \frac{a}{(2x-1)}$ (B) -1	$\frac{b}{(c)^{2}} + \frac{c}{(2x-1)^{3}} + \frac{c}{(2x-1)^{3$		c - d = ? (E)3
7.	_		= 0 的長、短軸長各名 (C) 15 7		
8.	下列何者 <u>錯誤</u> ? (A) $\sin \frac{8\pi}{3} = \sin \frac{2\pi}{3}$ (D) $\sec \frac{15\pi}{4} = -\sec \frac{\pi}{3}$,	$\cos\frac{17\pi}{6} = -\sin\frac{\pi}{3}$ $\cos\frac{7\pi}{6} = -\csc\frac{\pi}{6}$	(C) $\tan \frac{11\pi}{3} =$	$\tan \frac{2\pi}{3}$
9.	若 $f(x) = x^4 - 2x^3$ a+b+c=?	$+3x^2 + 7 = a(x - 1)$	$2)^4 + b(x-2)^3 + c(x-2)^3 + c(x-2)^2 + c(x-2)^3 + c($	$(-2)^2 + d(x-2) + e^{-2}$,則
	(A)20	(B)21	(C)22	(D)23	(E)24
10.	若 $L_1: 2x - y + 7 = 0$) 與 L ₂ : ax + y - 13	$=0$ 的交角為 $\frac{\pi}{4}$ 且 a	> 0 ,則 a = ?	
	(A) 6	(B) 5	(C) 4	(D)3	(E) 2
11.	求不等式 $1+\frac{2x-7}{(x-2)}$	7 2 ² <0的解為何?			
	(A) $3 > x$ (D) $-1 < x < 3$	$(\mathbf{B}) x$	<-1 <-1或3< <i>x</i>	(C)-1 < x < 2 或	2 < x < 3

12. 🕏	若拋物	J線 x ²	$= y + 3 \stackrel{\downarrow}{\cancel{2}}$	與直線5	x+y-3	=0相交	た於 P(a,	b) 及 Q(c,d)且d	a > c , §	$\mathbb{N} b - d = ?$
(.	(A) -3	5	((B)-8		(C) 3	1	(D) 35		(E)8
13. 🕏	若 P(4	l, 1) \	Q(2,1)	R(a, a)	e)且PR	+ QR 的	值為最小	小 ,則 a	= ?		
((A)1		($(B)\frac{3}{2}$		$(C)\frac{5}{4}$	<u>5</u> -	($D)\frac{7}{4}$		(E)2
14. ‡	若雙曲	線之	漸近線為	為 <i>x</i> 軸和	y軸且i	過點 (1, -	-1),則	此雙曲線	京方程式	為何?	
`	. /	12	$(1)^2 = 1$		(B) xy			`	C) $y^2 - ($	$(x-1)^2 =$	= 1
($(D)\frac{(x-1)^{-1}}{(x-1)^{-1}}$	$\frac{(+1)^2}{4}$	$-(y+1)^2$	2 = 1	$(E)\frac{(x)}{x}$	$\frac{(1+1)^2}{4}$ – ($(y+1)^2 =$	= -1			
15.											
($(A)\frac{8}{9}$		($(B)\frac{11}{10}$		(C)1		(D)10		(E)12
16. 🕏	6. 若 $\sin \theta - \cos \theta = \frac{1}{3}$			且 0<6	$\theta < \frac{\pi}{2}$,	則 \sin^2	θ – \cos^2	θ = ?			
(.	$(A)\frac{4}{9}$		($(B)\frac{\sqrt{17}}{9}$		(C) -	$\frac{\sqrt{2}}{3}$	($D)\frac{\sqrt{19}}{9}$		$(E)\frac{2\sqrt{5}}{9}$
	若直線 何?	(通過)	點 (3,4)) 且在第	第一象限	與兩軸)	所圍三角	角形面積	最小,	則此直線	泉的兩截距和為
	(A)12		((B)13		(C) 1	4	(D) 15		(E) 16
18. t	已知圓	$ x^2 +$	$y^2 = 10$	與圓 x ² -	$+y^2-2x$	x + 4y =	5有兩交	で點 ,求	此兩交點	點的距離	生為何?
($(A)\sqrt{3}$	3	($(B)\sqrt{35}$		(C) \(\sigma\)	37	(D) $\sqrt{39}$		(E) $2\sqrt{10}$
19. ‡	若數列]的一	般項為c	$a_n = \frac{1}{(n+1)^n}$	$\frac{2}{-1)(n+3}$	- ,則 $a_{\scriptscriptstyle 1}$	$+a_{2}+\cdot$	··+a ₂₂ =	?		
(.	$(A)\frac{276}{600}$	$\frac{6}{0}$	((B) $\frac{451}{600}$		$(C)\frac{4}{6}$	176 500	(D) $\frac{500}{600}$		(E)1
20. 🛪	若方程	建式 4 ^x	$-3\cdot2^{x+2}$	1 - 16 = 0	O,则x	= ?					
(.	(A)-3		((B)-2		(C)1		(D) 2		(E)3
					I			ı			1
1		2	3	4	5	6	7	8	9	10	
C		A	Е	В	D	A	Е	D	С	D	
11		12	13	14	15	16	17	18	19	20	
C		A	D	В	A	В	C	В	В	Е	

102 學年度四技新生基礎數學第二次測驗(A 卷)

1.	$ \not = \frac{12x^2 - 26x + 5}{(2x - 3)^3}$	$\frac{b}{a} = \frac{a}{(2x-3)} + \frac{b}{(2x-3)}$	$\frac{c}{(2x-3)^3} + \frac{c}{(2x-3)^3}$,	$\mathbb{N} a + b + 2c = ?$	
	(A) -9	(B) -6	(C) 0	(D) 6	(E) 9
2.		$\frac{-x}{-x}$, $ $			
	(A) $\frac{a}{6-a}$	$(B) \ \frac{2+a}{2-a}$	$(C) \frac{2+a}{4-a}$	(D) $\frac{2-a}{2+a}$	(E) $\frac{a}{6+a}$
3.	設 ΔABC 中, \overline{A}	$\overline{B} = 5$ $\overline{BC} = 6$	$\overline{CA} = 7$, $\iint \cos^2 -$	$\frac{C}{2}$ = ?	
	(A) $\frac{1}{7}$	(B) $\frac{2}{7}$	(C) $\frac{4}{7}$	(D) $\frac{5}{7}$	(E) $\frac{6}{7}$
4.	已知圓 $x^2 + y^2 =$	=9與直線x+y=3	3相交於兩點,則	此兩點距離為何	?
	(A) 2	(B) $2\sqrt{2}$	(C) 3	(D) $3\sqrt{2}$	(E) 4
5.	下列何者正確?				
	$(A) \sin(x - \frac{\pi}{2}) =$	$=\cos x$ (B)	$\cos(x + \frac{\pi}{2}) = \sin x$	x (C) $tan(x)$	$(x + \frac{\pi}{2}) = \cot x$
	(D) $\sin(x+\pi) =$	$\cos x$ (E)	$\csc(x + \frac{\pi}{2}) = \sec x$	x	
6.	若 $ x^4 - 4x^3 - 14x^3 $	$x^2 + 36x + 45 = (x - 1)$	$a^{4} + a(x-1)^{3} + b(x^{2})$	$(c-1)^2 + c(x-1) + d$,則 $a+b+c+d=$?
	(A) 24	(B) 34	(C) 44	(D) 54	(E) 64
7.	設 O 為原點, A	$(a,0) \cdot \mathbf{B}(0,b)$	且 $\overline{AB} = 5$,則 ΔC	DAB 最大面積為信	T ?
	(A) 6	(B) $\frac{25}{4}$	(C) $\frac{13}{2}$	(D) 7	(E) 8
8.	設雙曲線之漸近	·線為x軸和y軸,	且過點(-1,1),	則此雙曲線貫軸	長為何?
	(A) 2	(B) $\sqrt{5}$	(C) $2\sqrt{2}$	(D) 4	(E) 5
9.	設 $\log_2 x^2 + \log_x$	$2=3$ 的兩根為 α 和	$\sin \beta$,則 $\alpha \beta = ?$		
	$(A) - \frac{3}{2}$	(B) $\frac{1}{2}$	(C) $\frac{3}{2}$	(D) $\sqrt{2}$	(E) $2\sqrt{2}$

10. 設 $\sin \theta - \cos \theta = \frac{1}{2}$, $0 < \theta < \frac{\pi}{2}$,則 $\sin^3 \theta + \cos^3 \theta = ?$

(A) $\frac{4}{9}$ (B) $\frac{\sqrt{2}}{3}$ (C) $\frac{\sqrt{19}}{9}$ (D) $\frac{2\sqrt{5}}{9}$ (E) $\frac{5\sqrt{7}}{16}$

	(A) 3	(B) 6	(C) 9	(D) 12	(E) 15
12.	已知圓 $x^2 + y^2 =$ 成四邊形的面積		2x+4y=5有兩交	ご點 ,則以此兩交點	站與兩圓心為頂點所連
	$(A) 4\sqrt{2}$	(B) 6	$(C) 2\sqrt{10}$	$(D)\frac{5\sqrt{7}}{2}$	$(E) 3\sqrt{5}$
13.	若一數列前n項	的和為 $a_1 + a_2 + \cdots$	$+a_n=n^2+5$,則	$a_5 + a_{10} + a_{15} + \cdots$	$+a_{50} = ?$
	(A) 175	(B) 250	(C) 320	(D) 450	(E) 540
14.	不等式 $4^{x+\frac{1}{2}}-8$ ·	$2^{x+1} \le 2^x - 8$,共有	「幾個整數解?		
	(A)2	(B) 3	(C) 4	(D) 5	(E) 6
15.	若 $f(x) = \sqrt{2-x}$	$g(x) = \sqrt{3-x}$,則 g 與 f 的合成	$oxed{ imes}_{oldsymbol{g}\circ f}$ 的定義	战為何?
	(A)[2,3]	(B) $(2,3)$	(C) $[-7, 2]$	(D) [2, 7]	(E) (2,7)
16.	在 $\triangle ABC$ 中,向	$ \stackrel{\longrightarrow}{=} \overline{AB} = <1,2> , \overline{A} $	$\overline{C} = <-x, 2x>$, x	$i>0$ 。若 ΔABC 之	.周長為 $6\sqrt{5}$,則 $x=?$
	$(A)\frac{10}{11}$	(B) $\frac{20}{11}$	(C) $\frac{30}{11}$	(D) $\frac{40}{11}$	(E) $\frac{50}{11}$
	1-	$\frac{x}{x}$, $g(x) = \frac{3x + x^3}{1 + 3x^2}$			
	$(A) \frac{1}{f(x)}$	(B) $f^2(x)$	(C) $2f(x)$	(D) $3f(x)$	(E) $4f(x)$
18.		a = 12 , $ab = ?$			
	(A) -2	(B) −1	(C) 0	(D) 1	(E) 2
19.	設 $f(x) = \frac{1}{\sqrt{x}}$,	則 $\lim_{h \to 0} \frac{f(2+h) - f(1)}{h^2 + 2h}$	2) =?		
	$(A) \ \frac{1}{\sqrt{2}}$	(B) $\frac{-1}{\sqrt{2}}$	$(C) \ \frac{-1}{2\sqrt{2}}$	(D) $\frac{-1}{4\sqrt{2}}$	$(E) \ \frac{-1}{8\sqrt{2}}$
20.	-	之圖形。若將 Γ 水 則此新圖形之表示		,往右平移1單位	立,再對 x 軸反射,得
	(A) $y = -(\frac{x}{2} + 1)$	(B)	$y = -\frac{(x+1)^2}{2}$	(C) $y = -\frac{0}{2}$	$\frac{(x-1)^2}{2}$
	(D) $y = -(\frac{x-1}{2})$	(E)	$y = \frac{(1-x)^2}{2}$		

11. 若直線通過點 P(3, 4)且兩軸截距均為整數,則滿足條件的直線共有幾條?

1	2	3	4	5	6	7	8	9	10
В	A	Е	D	Е	C	В	C	Е	E
11	12	13	14	15	16	17	18	19	20
D	D	Е	D	С	С	D	A	Е	D

選擇題:單選題,每題5分不倒扣,共計20題。

1.
$$\frac{1}{3\times5} + \frac{1}{5\times7} + \dots + \frac{1}{97\times99} = ?$$

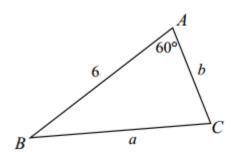
- (A) $\frac{16}{99}$ (B) $\frac{17}{99}$ (C) $\frac{32}{99}$ (D) $\frac{34}{99}$

- (E) $\frac{36}{99}$

- (C) 5
- (D) 7
- (E) 9

3.
$$若 f(x) = x^4 - 4x^3 + 5x^2 - 8x + 13$$
,則 $f(3+\sqrt{2}) = ?$

- (A) $37 + 18\sqrt{2}$ (B) $47 + 28\sqrt{2}$ (C) $57 + 38\sqrt{2}$
- (D) $67 + 48\sqrt{2}$
- (E) $77 + 58\sqrt{2}$


- (D) 1
- (E) 2

5.
$$\Rightarrow \frac{2x+3}{(x^2+1)(x+1)} = \frac{Ax+B}{x^2+1} + \frac{C}{x+1}$$
, $\Rightarrow A-B+C=?$

- (A) -5 (B) $-\frac{5}{2}$ (C) 0
- (D) $\frac{5}{2}$
- (E) 5

6.
$$\triangle$$
 ABC 如下圖。若 c =6, $\angle A$ =60°, $a+b$ =10,則 a =?

- (A) $\frac{29}{7}$ (B) $\frac{32}{7}$ (C) 5
- (D) $\frac{38}{7}$
- (E) $\frac{41}{7}$

7. 橢圓 $3x^2 + 4y^2 - 16y = 20$ 兩焦點的距離為何?

- (A) $\frac{3}{2}$ (B) $\sqrt{3}$
- (C) 2
- (D) 3
- (E) $2\sqrt{3}$

8. 設 $0 < \theta < \frac{\pi}{8}$,則 $\sqrt{2 - \sqrt{2 + 2\cos 4\theta}}$ 可化簡為以下何者?

- (A) $\sqrt{2}\sin\theta$
- (B) $2\sin\theta$ (C) $\sqrt{2}\cos\theta$ (D) $2\cos\theta$ (E) $\sin 2\theta$

9.	已知 $f(x) = 2x^4 - 9$	$9x^3 - 23x^2 + 81x + 4$	-5 = 2(x-3)(x-a)(x-a)	(x-b)(x-c),	$+b^2+c^2=?$
	(A) $\frac{65}{4}$	(B) $\frac{67}{4}$	(C) $\frac{137}{4}$	(D) 35	(E) $\frac{145}{4}$
10.		與 $L_2: ax + y + c = 0$	相互垂直,且(-3,	1)在 L_2 上,則 $c=?$	
	(A) 2	(B) 3	(C) 4	(D) 5	(E) 6
11.	不等式 $\frac{x^3 + 4x^2 + 5x}{x - 1}$	x-1 ≥1的解為何?			
	(A) -2≤x<1或1(D) x≤0或1<x< li=""></x<>	$\begin{array}{ccc} \langle x & & \text{(B)} & x \leq x \\ & \text{(E)} & 0 \leq x \end{array}$		(C) $0 < x < 1$	或1 <x< td=""></x<>
12.	設拋物線 $y^2 = 2x +$				
	(A) -6	(B) -3	(C) 0	(D) 3	(E) 6
13.	求點 P(0, 2) 到拋物	$y = x^2$ 的最短距	主離為何?		
	L		(C) $\sqrt{3}$	(D) $\frac{7}{4}$	(E) 2
14.	設 $2^a = 3 \cdot 3^b = 2$				
	(A) 6	_	(C) 8	(D) 9	(E) 10
15.	設 $\sin \theta - 2\cos \theta = 1$, $\pi < \theta < \frac{3\pi}{2}$,则 2	$2\sin\theta + \cos\theta = ?$		
	(A) -3				(E) 2
16.	直線 $3x-4y=12$,				
			(C) 60		(E) 84
	設圓 $x^2 + y^2 - 2x + 4$		A, B 兩點,且圓心 A)=?
	(A) -1	(B) $-\frac{1}{2}$	(C) 0	(D) $\frac{1}{2}$	(E) 1
18.	設 $\vec{a} = <1,1>$, $\vec{b} = <2$	$2,6 > \circ $ 若 $\left \vec{ta} + \vec{b} \right $ 為:	最小時,則 <i>t</i> =?		
	(A) -10	(B) -8	(C) -6	(D) -4	(E) -2
19.		$\frac{x}{2} + 1 + \log_5 4 , \emptyset x$	= ?		
	(A) 2	(B) 3	(C) 4	(D) 5	(E) 6
20.	若 α , β 為 $2\sin^2 x - 3$	3sin x+1=0 之二根	,則 $\cos^2\alpha + \cos^2\beta$	<i>3</i> = ?	
	(A) $\frac{3}{4}$	(B) $\frac{5}{4}$	(C) $\frac{7}{4}$	(D) $\frac{9}{4}$	(E) $\frac{11}{4}$

1	2	3	4	5	6	7	8	9	10
A	D	C	A	В	D	Е	В	C	D
11	12	13	14	15	16	17	18	19	20
D	Е	A	В	В	В	С	D	C	A

選擇題:單選題,每題5分不倒扣,共計20題

(A)
$$-2+5\sqrt{2}$$

(A)
$$-2+5\sqrt{2}$$
 (B) $-1+5\sqrt{2}$ (C) $1+5\sqrt{2}$ (D) 9 (E) $2+5\sqrt{2}$

(C)
$$1+5\sqrt{2}$$

(E)
$$2+5\sqrt{2}$$

(A)
$$\frac{6a}{1-a}$$
 (B) $\frac{2+a}{2-a}$ (C) $\frac{4+a}{2-a}$ (D) $\frac{2-a}{2+a}$ (E) $\frac{6a}{1+a}$

(B)
$$\frac{2+a}{2-a}$$

(C)
$$\frac{4+a}{2-a}$$

(D)
$$\frac{2-a}{2+a}$$

(E)
$$\frac{6a}{1+a}$$

3. 設 $\triangle ABC$ 中, $\overline{AB}=6$ 、 $\overline{BC}=5$ 、 $\overline{CA}=4$ 。若 D 為 \overline{BC} 上一點使 $\overline{AD}=4$,則 $\overline{BD}=?$

(B) 2 (C)
$$\frac{5}{2}$$
 (D) 3 (E) 4

4. 求圓 $x^2 + y^2 - 4x + 6y - 3 = 0$ 與直線 3x - 4y = -7 的最近距離為何?

$$(E)$$
 5

5. 下列何者錯誤?

(A)
$$\sin(\pi - x) = \sin x$$

(B)
$$\cos(\pi - x) = -\cos x$$

(C)
$$\tan(\pi + x) = \tan x$$

(D)
$$\csc(\frac{\pi}{2} + x) = -\sec x$$
 (E) $\sec(\frac{3\pi}{2} + x) = \csc x$

(E)
$$\sec(\frac{3\pi}{2} + x) = \csc x$$

6. $2 \neq 0$ $f(x) = 3x^5 + 19x^4 - 13x^3 + 6x^2 - 6x + 15$, $x \neq f(-7) = ?$

(E) 8

7. 設 $f(x)=x^2$,若將函數圖形向左平移1個單位,再向上平移k個單位後,所得到的圖形通 過點 (-2,4) ,則 k=?

$$(A) -5$$

(B)
$$-3$$

$$(D)$$
 Δ

8. 設雙曲線之方程式為 $\frac{x^2}{4}-y^2=1$,若將此雙曲線之貫軸長放大為2倍,共軛軸與中心點不 變,則此雙曲線方程式變為何?

(A)
$$\frac{x^2}{8} - y^2 = 1$$

(B)
$$\frac{x^2}{8} - \frac{y^2}{2} =$$

(A)
$$\frac{x^2}{8} - y^2 = 1$$
 (B) $\frac{x^2}{8} - \frac{y^2}{2} = 1$ (C) $\frac{x^2}{16} - y^2 = 1$ (D) $\frac{x^2}{16} - \frac{y^2}{2} = 1$ (E) $\frac{x^2}{8} - \frac{y^2}{4} = 1$

$$\frac{x^2}{16} - \frac{y^2}{2} = 1$$

(E)
$$\frac{x^2}{8} - \frac{y^2}{4} = 1$$

9. 不等式 $\frac{1+2\log_2 x}{-1+\log_2 x} \le 1$ 之解為何?

(A)
$$\frac{1}{2} \le x \le 2$$
 (B) $\frac{1}{2} \le x < 2$ (C) $\frac{1}{4} \le x \le 2$ (D) $\frac{1}{4} \le x < 2$ (E) $1 \le x < 2$

(B)
$$\frac{1}{2} \le x < 2$$

$$(C) \quad \frac{1}{4} \le x \le 2$$

(D)
$$\frac{1}{4} \le x < 2$$

(E)
$$1 \le x < 2$$

10. $\lim_{\theta \to 0} \sin \theta - \cos \theta = \frac{1}{2}, \quad \sin \theta = ?$

(A)
$$\frac{-1}{4}$$
 (B) $\frac{-1}{8}$ (C) $\frac{\sqrt{3}}{4}$ (D) $\frac{\sqrt{3}}{2}$

(B)
$$\frac{-1}{8}$$

(C)
$$\frac{\sqrt{3}}{4}$$

(D)
$$\frac{\sqrt{3}}{2}$$

(E) 1

11. 若直線通過點 P	(3,4) 且與兩坐標	軸在第一象限圍成.	三角形,則此三角	角形面積最小值為何?
(A) 10	(B) 12	(C) 14	(D) 20	(E) 24
12. 已知兩圓 $x^2 + y$	$x^2 = 10$ 與 $x^2 + y^2 - $	2x+4y=5有雨交	點,則此兩交點自	的距離為何?
(A) 3	(B) 4	(C) $\sqrt{26}$	(D) $\sqrt{35}$	(E) $5\sqrt{2}$
13. $1\times2+2\times3+3\times$	$4 + \dots + 25 \times 26 = 3$			
(A) 5125	(B) 5850	(C) 6500	(D) 6975	(E) 7200
$14.$ 設曲線 $y = \log_3$	x與 x 軸、直線 x =	=9的交點分別為A	$\cdot B$,且直線 $x = 1$	9與 x 軸的交點為 C ,
則 ΔABC 的面積	為何?			
(A) 8	(B) 12	(C) 16	(D) 18	(E) 24
15. 若 $g(x) = \sqrt[3]{x^2 - x^2}$		的值域為何?		
(A) [2,4]	(B) $[2,\infty)$	(C) $[-1,\infty)$	(D) $(-\infty, \infty)$	(E) $(-\infty,2] \cup [4,\infty)$
16. 設 $10 < x < 100$,	且 $\log x$ 與 $\log \frac{1}{x}$ 自	的尾數相同,則 $x=$:?	
(A) $10\sqrt{2}$	(B) 20	(C) $10\sqrt{6}$	(D) $10\sqrt{8}$	(E) $10\sqrt{10}$
17. ΔABC 中,若A	$\overline{B} = 4$, $\overline{BC} = 5$,	$\cos \angle B = -\frac{5}{13} , $	S 為 $\Delta\!ABC$ 的面積	, 則下列何者正確?
(A) $S < 8$	(B) $8 \le S < 9$	(C) $9 \le S < 10$	(D) $10 \le S < 11$	(E) 11≤ <i>S</i>
18. 設 $\vec{a} = \langle \cos \alpha, \sin \alpha \rangle$	$\alpha \rangle , \vec{b} = \langle \cos \beta, \sin \beta \rangle$	n $\left.eta ight>$,且 $\left.0\!<\!lpha\!<\!\pi ight.$,	$0 < \beta < \pi$, $\alpha \neq \beta$	eta ,則兩向量 $ar{a}$ + $ar{b}$ 與
$\vec{a}-\vec{b}$ 的夾角為何	1?			
(A) 0	(B) $\frac{\pi}{4}$	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{2}$	(E) π
19. $ \sharp \lim_{x \to 1} \frac{3x-1}{2x+1} - \frac{2}{3} $				
(A) $\frac{1}{9}$	(B) $\frac{2}{9}$	(C) $\frac{1}{3}$	(D) $\frac{4}{9}$	(E) $\frac{5}{9}$
$20. \not \Xi \lim_{x \to 0} \frac{\sqrt{ax+b}-1}{x}$	$\frac{2}{4} = \frac{-1}{4}$, $\sharp a + b =$	= ?		
	(B) 4		(D) 6	(E) 7

1	2	3	4	5	6	7	8	9	10
В	Е	Е	В	D	Е	C	С	D	В
11	12	13	14	15	16	17	18	19	20
Е	D	В	A	C	Е	C	D	Е	A

1.		$x^2 - 4x - 3$, $\iint f(-\frac{1}{2})^{2}$	$\frac{2-\sqrt{3}}{3})=?$		
	(A) $-3\sqrt{3}$	(B) $-2\sqrt{3}$	(C) $2 - \sqrt{3}$	(D) $2 + \sqrt{3}$	(E) $2\sqrt{3}$
2.	設 α, β 為方程式 x^2	$x^2 - 3x - 1 = 0$ 之二根	${\mathbb E}{\mathbb E}lpha>eta$,則 $lpha^2$	$-\beta^2 = ?$	
	(A) $\sqrt{13}$	(B) $\frac{3}{2}\sqrt{13}$	(C) $2\sqrt{13}$	(D) $3\sqrt{13}$	(E) $4\sqrt{13}$
3.	$2 \cdot 11^5 - 23 \cdot 11^4 + 13$ (A) -77	$8 \cdot 11^3 - 25 \cdot 11^2 + 40$ (B) -35		(D) 21	(E) 63
4.	$ \frac{5x^3 - 9x^2 + 9x - 3}{(x-1)^2(x^2+1)} $	$\frac{B}{A} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{B}{(x-1)^2}$	$\frac{Cx+D}{x^2+1}$,則 $A+B+$	C+D=?	
		(B) -1			(E) 8
5.	不等式 $\sqrt[3]{(x-2)^2}$ —	$\frac{1}{\sqrt[3]{x-2}} \le 0$ 之解為何	?		
	(A) $1 \le x < 2$	(B) $2 < x \le 3$	(C) $1 < x < 2$	(D) $x \ge 3$ 或 $x < 2$	(E) $2 < x < 3$
6.	設 $x^2 + 1$ 為 $x^4 + 2x^3$ (A) 4			(D) 7	(E) 8
7	若直線L與直線3x	. ,	. ,	· ,	
<i>,</i> .	點,則L的方程式			1 1 3 - 0 33 3x 1 4 y	17 – 0 117 ×
			(C) 4x - 3y = 9	(D) $4x - 3y = -5$	(E) $4x = 3y$
8.	設兩向量 $\bar{a} \cdot \bar{b}$ 的	夾角為 θ , $ \bar{a} =3$	$ \vec{b} = 2 且 \vec{a} + 2\vec{b} $	$=\sqrt{37}$,則 θ =?	
	(A) 0	(B) $\frac{\pi}{6}$	(C) $\frac{\pi}{4}$	(D) $\frac{\pi}{3}$	(E) $\frac{\pi}{2}$
9.	設向量ā=<14,-1>	$> \vec{b} = <2^x, 4^{x+1} - 8$	$>$,且 $\bar{a}\perp\bar{b}$,則 x	=?	
	(A) -2	(B) -1	(C) 0	(D) 1	(E) 2
10.	若橢圓以(-3,1)與				
	(A) 10	(B) $8\sqrt{2}$	(C) $10\sqrt{2}$	(D) 16	(E) 20
11.	若拋物線方程式為		焦點坐標為(a,b)	,則 $a+b=?$	
	(A) -2	(B) -1	(C) 2	(D) 3	(E) 5
12.	若雙曲線方程式為 (A) (-4,2)	4x + 2xy - 6x + 4y = 13 (B) (-2, 3)			(E) (2,1)
13.	若 $\log_2 x = \log_x 16$. , . , ,
	(A) -1	3	(C) 2	(D) 3	(E) $\frac{17}{4}$
					•

- (A) $\frac{1}{4}$
- (B) $\frac{7}{5}$ (C) $\frac{5}{2}$
- (D) 5
- (E) 12

15.
$$\log_2 \frac{4\sqrt{3}}{3} + \log_4 12 = ?$$

- (A) $\frac{1}{2}$ (B) $\frac{3}{2}$
- (C) 2 (D) $\frac{5}{2}$
- (E) 3

16. 設
$$\frac{\pi}{2} < \theta < \pi$$
,且 $\sin \theta + \cos \theta = \frac{-1}{5}$,則 $\tan \theta = ?$

- (A) $\frac{-12}{5}$ (B) $\frac{-4}{3}$ (C) -1 (D) $\frac{-3}{4}$

- (E) $\frac{-5}{12}$

- (A) $\frac{t^2 1}{3t^2 1}$ (B) $\frac{t^2 + 1}{3t^2 + 1}$ (C) $\frac{3t^2 1}{t^2 + 1}$ (D) $\frac{t}{2t^2 + 2}$
- (E) $\frac{t+1}{2t^2+2}$

18. 在
$$xy$$
 平面上,曲線 $3|x-2|+|2y+1|=6$ 所圍區域的面積為何?

- (A) 12
- (B) 13
- (C) 14
- (D) 15
- (E) 16

19.
$$若(a,b)$$
滿足 $2x+3y=1$,則 a^2+b^2 的最小值為何?

- (A) $\frac{1}{13}$ (B) $\frac{1}{\sqrt{13}}$ (C) $\frac{1}{\sqrt{5}}$ (D) $\frac{1}{2}$

- (E) 1

20. 若點
$$A$$
 在圓 $x^2 + y^2 = 8y$ 上,且點 B 在圓 $y^2 = x(6-x)$ 上,則 \overline{AB} 長度的最大值為何?

- (A) 10
- (B) 11
- (C) 12
- (D) 13
- (E) 14

1	2	3	4	5	6	7	8	9	10
В	D	D	C	В	C	D	D	E	В
11	12	13	14	15	16	17	18	19	20
D	В	E	В	E	D	В	A	A	C

選擇題:20 題單選,每題5分,答錯不倒扣。

	1.6	7,000	, 1 1-11							
1.	已知 ΔABC 中,则 \overline{CD} =?	$\angle BCA = 120^{\circ}$,	$\overline{AC} = 3$, $\overline{BC} = 5$	且 D 在 AB 上。若	$\overline{CD} \perp \overline{AB}$,					
		$(B)\frac{15\sqrt{3}}{14}$	$(C)\frac{35\sqrt{3}}{2}$	$(D)\frac{55\sqrt{3}}{2}$	$(E)\frac{75\sqrt{3}}{2}$					
2.	$\frac{7x^2 - 13x}{x^3 - x^2 - x + 1}$	$\frac{A}{1} = \frac{A}{x-1} + \frac{B}{(x-1)}$	$\frac{C}{x+1}$, $A + \frac{C}{x+1}$	B+C=?						
	(A) 2	(B) 4	(C) 6	(D) 8	(E) 10					
3.	若扇形的夾角為6	θ , ∞ ξ $\frac{\pi}{2}$, ξ	積為 $\frac{3}{2}\pi$,則 θ =?	r						
	$(A)\frac{\pi}{12}$	$(B)\frac{\pi}{10}$	$(C)\frac{\pi}{8}$	$(D)\frac{\pi}{6}$	$(E)\frac{\pi}{3}$					
4.	設 P 點在圓 x^2 +	$y^2 = 6x + 8y \perp ,$	則 P 與直線 $3x+4$	y+5=0最大距離	為何?					
	(A)10	(B)11	(C) $\frac{56}{5}$	(D)12	(E) $\frac{66}{5}$					
5.	3									
6.	若多項式 ax ³ +3 (A)-44	$8x^2 + bx + 10$ 可有 (B) -22	被 x+1 與 x-2 (C)-11	、整除,則 <i>a-b</i> = (D)22	: ? (E) 44					
7.	3a + b = ?			上一點使得 \overline{AC} +						
		(B) 0		(D) 3	(E) 6					
			,=5,則雙曲線中							
		4	4	(D) $(2, -3)$	(E) $(4, -3)$					
9.		x = 1 有幾個實數解 (B) 1	₹ ? (C) 2	(D) 3	(E) 4					
10.	設 $\sin x - 2\cos x$	$=\sqrt{5}$,則 $\sin x$ +	$2\cos x = ?$							
	(A) -1	(B) $\frac{-3}{\sqrt{5}}$	(C) 0	(D) $\frac{3}{\sqrt{5}}$	(E) 1					

背面尚有試題

	11.	設x,y均為小於 (A)11		且 $3x + 2y = 100$,则 (C) 33	l(x,y)有幾組解? (D)40	(E) 50
	12.		8x+4y=k 與	$x^2 + y^2 = 2y$ 所圍重疊	色區域面積最大,貝	lk的最小值為
		何? (A) 15	(B) 16	(C) 17	(D) 18	(E) 19
	13.		$c_2 < \dots < x_{99} <$	$x_{100} = 10 \text{ll} x_1 - x_0 = 1$	$x_2 - x_1 = \dots = x_{100} - \dots$	- X ₉₉ ,則
		$x_{50} = ?$ (A) 3.5	(B) 4	(C) 4.5	(D) 5	(E) 5.5
	14.	不等式 $2^{2x+1} - 7$ · (A) $(-\infty, -1]$		¥集合為何? (C) [−1,2]	(D) [-1,2)	(E) [2.∞)
	15.			$\frac{1}{x-3}$,則 f 與 g 的合		
		V	~	(C) (3,19)		
	16.	在 $\triangle ABC$ 中 , 向量	$\overrightarrow{AB} = \langle 1,2 \rangle$	$\overrightarrow{AC} = \langle x-1, x \rangle$, <i>x</i> > 0 。 若 Δ <i>ABC</i>	之面積為 $\frac{5}{2}$,
		則 x = ? (A) 1	(B) 2	(C) 3	(D) 5	(E) 7
	17.	若 $f(x) = 2x + 1$	且 $f(g(x)) =$	$6x+9 , \not \exists g(x)=?$		(F) 0 - 10
				(C) $4x - 3$	(D) $4x + 3$	(E) $8x + 10$
	18.					
		(A) -9			(D) 3	(E) 9
	19.		,則 $\lim_{h\to 0} \frac{f(1+\frac{1}{2})}{h}$	**		
,		(A) -2	(B) -1	(C) $\frac{-1}{2}$	(D) $\frac{1}{2}$	(E) 1
2	20.	將平面曲線 y = j 的方程式為何?	f(x)向右平移	1單位,再以y軸為中	心左右放大為2倍	,則所得曲線
		$(A) y = f(\frac{x-1}{2})$		$(B) y = f(\frac{x}{2} - 1)$	(C) y = f(2x)	c – 1)
		(D) $y = f(\frac{x+1}{2})$		(E) y = f(2x+1)		
-		9039				
		1 2	2 1	5 6	7 0	0 10

1	2	3	4	5	6	7	8	9	10
В	В	A	В	С	A	E	В	В	В
11	12	13	14	15	16	17	18	19	20
В	В	E	E	D	E	В	A	A	В

(E) 105

選擇題:20 題單選,每題5分,答錯不倒扣。

2. 已知 $(\log 7x)(\log ax) = 2$ 之兩根乘積為 $\frac{1}{72}$,則a = ?

(A) -93 (B) -57 (C) 57 (D) 93

	(A) $\frac{1}{72}$	(B) $\frac{7}{72}$	(C) 2	(D) $\frac{72}{7}$	(E) 72
3.	已知橢圓 E 通過黑	$\frac{x}{9}$ 出與橢圓 $\frac{x}{9}$	$\frac{y^2}{1} + \frac{y^2}{5} = 1$ 有相同焦	點,則橢圓E的長	軸長為何?
	(A) $2\sqrt{5}$	(B) 6	(C) 8	(D) 10	(E) $8\sqrt{2}$
4.	下列何者 <u>正確</u> ? (A) $\sin(-\theta) = \sin \theta$ (D) $\tan^2 \theta - 1 = \sec \theta$		$tan(-\theta) = tan \theta$ $cos(\alpha + \beta) = cos \alpha c$	(C) $2\cos^2\theta = \cos\beta - \sin\alpha\sin\beta$	$=1-\cos 2\theta$
5.	$\frac{x-8}{(x+1)(x-2)^2} =$	$= \frac{A}{x+1} + \frac{B}{(x-2)} + \frac{B}{(x-2)}$	$\frac{C}{(x-2)^2}, \ \ \cancel{x} \ 3A + 2B$	B+C=?	
	(A) -3	(B) -1	(C) 0	(D) 1	(E) 3
6.	方程式為何? (A) $3x-4y=6$	- 4y = 1 垂直且與 x (B) 3x - (E) 4x -	-4y = 12	限所圍的三角形面 (C) 4x+3y=	
7.	設 $3x^3 - 5x^2 + 7x$	$+1 = a(x-2)^3 + b(x^2 + b)$	$(x-2)^2 + c(x-2) + a$	l,則 $b+c=?$	
	(A) 16	(B) 26	(C) 36	(D) 46	(E) 56
8.				抛物線的頂點座標 (D) (1,-1)	
9.	若 $ \vec{a} =3$ 、 $ \vec{b} =4$	且 $ \vec{a}+\vec{b} =\sqrt{37}$,	則 $(2\vec{a}+3\vec{b})\cdot(\vec{a}-\vec{b})$	= ?	
	(A) -24	(B) -12	(C) 0	(D) 12	(E) 24
10.	若 $S = 1 + 3^1 + 3^2 +$	- 3³ + ··· + 3⁰9 ,則 5	S 為幾位數?(log 2	$= 0.3010, \log 3 = 0$.4771)
	(A) 45	(B) 46	(C) 47	(D) 48	(E) 49
11.	$\sqrt{x+3} > x-3$ 之所	有解為何?			

(A) $-3 \le x < 3$ (B) $-3 \le x < 6$ (C) $2 \le x < 3$ (D) $-3 \le x < 7$ (E) x < 6

背面尚有試題

12.	若方程式 $\frac{x^2}{t^2-4}$ +	$\frac{y^2}{t^2-9} = 1$ 的圖形為	雙曲線,求實數	t 的範圍?	
	(A) $t < -2$	(B) $t > 3$	(C) $-3 < t < 3$	(D) $-2 < t < 2$	
	(E) $-3 < t < -2$	$\frac{1}{2}$ 2 < t < 3			
13.		$-nx - 3 = (x^2 + 2x - 1)$			(E) 0
	. ,	(B) 5	•	(D) 7	(E) 8
14.	xy 平面上,求曲:		: 軸所圍區域的面	積為何?	
	$(A) \ \frac{5\pi}{4}$	(B) 5π	(C) $\frac{25\pi}{4}$	(D) $\frac{25\pi}{2}$	(E) 25π
15.			余之的餘式分別為	3x+1、 $2x-1$,則	f(x) 除
	以 $x^2 - 3x + 2$ 的 的				
	(A) $-x+5$	(B) $x + 2$	(C) $5x+1$	(D) $2x + 7$	(E) $-2x+3$
16.	_	$\overline{BC}:\overline{CA}=7:8:3$,	_		
	(A) $\frac{-1}{8}$	(B) $\frac{-1}{7}$	(C) $\frac{1}{8}$	(D) $\frac{1}{7}$	(E) $\frac{1}{3}$
17.	設向量 $\bar{a} = <1,2>$	$\vec{b} = <\frac{1}{2} - 4^{x+1}, 7$	$2^x > $,若 $ar{a} /\!/ ar{b}$,	則 $x = ?$	
	(A) -3	(B) -2	(C) $\frac{1}{8}$	(D) 2	(E) 3
18.	設 $\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$,則	$\sqrt{1+\sin 2\theta} - \sqrt{1-\sin 2\theta}$	$ \frac{1}{\sin 2\theta} = ? $		
	(A) 0	(B) $\sin \theta$	(C) $2\sin\theta$	(D) $\cos \theta$	(E) $2\cos\theta$
19.	設 x 為實數,求 f	$f(x) = 3(5^x + 5^{-x}) - 1$		之最大值為何?	
	(A) 1	(B) 2	(C) 3	(D) 5	(E) 25
20.	設點(a,b)在直線	x-2y=0上且點 (c	x,d)在直線2x-4	$y=1$ 上,則 $(a-c)^2$	$+(b-d)^2$ 之最
	小值為何?				
	(A) $\frac{1}{20}$	(B) $\frac{1}{10}$	(C) $\frac{1}{5}$	(D) $\frac{1}{\sqrt{10}}$	$(E) \ \frac{1}{\sqrt{20}}$

1	2	3	4	5	6	7	8	9	10
A	D	C	Е	A	Е	C	Е	A	D
11	12	13	14	15	16	17	18	19	20
В	Е	В	D	A	В	A	Е	С	A

(A) $\frac{1}{9}$ (B) $\frac{1}{3}$ (C) 1 (D) 2 (E) 3

選擇題:20 題單選,每題5分,答錯不倒扣。

1. 若 $\frac{1}{\alpha}$ 和 $\frac{1}{\beta}$ 為方程式 $x + \frac{3}{x} = 1$ 的兩根,則 $\alpha^2 \beta + \alpha \beta^2 = ?$

2.		$(4(4^x + 4^{-x}) - (2^x)$ (B) -2	(C) 0 + 2 ^{-x}) - 60 = 0 的 解	≩? (D) 1	(E) 3
	(H) = 4	$(\mathbf{B}) = 2$	(C) 0	(D) 1	(L) 3
3.		滿足方程式 $\frac{\cos^2 \theta}{\cos^2 \theta}$	$\frac{\partial \theta(1+2\sin\theta)}{\partial -\sin^2\theta - \sin\theta} = 0$	之θ的個數為何?	
	(A) 0	(B) 1	(C) 2	(D) 3	(E) 4
4.	已知 $f(x)$ 為二次 $f(x)$ 為二次 $f(x)$ (A) $f(x)$ (B) $f(x)$ f	·	(B) $x^2 - 2x - 3$ (E) $x^2 + 3x - 8$	-	-
5.	式,則此多項式包	1.含下列哪一個因	將此正方體的表面: 式? (C) x+18		
6.	已知向量 a =< 5,-1 點為何?	12 > , 向量 b 與 ā	同向,且 $ \vec{b} $ =39	,若 \overline{b} 之起點為 (-1)	$,3)$,則 \vec{b} 之終
	(A) $(14, -33)$	(B) $(-14, 33)$	(C) $(-18, 45)$	(D) $(18, -45)$	(E) $(4, -9)$
7.	方程式 $\log x + \log($		+1的解為何? (C) 4-√2	(D) $4 + 2\sqrt{3}$	(E) $4 + \sqrt{26}$
8.	設 $\sin 2\theta = \frac{4}{5}$,則		(C) 4-\q2	(2) 4 1 2 4 3	(2) 4 1 \(20\)
			(C) $\frac{19}{25}$	(D) $\frac{4}{5}$	(E) $\frac{21}{25}$
9.	已知0為平面上兩	向量 \overline{a} 與 \overline{b} 之夾戶	角。若 $ \vec{a} =3$ 、 $ \vec{b} $	$ = 5 \perp 2\vec{a} + \vec{b} = 7$	θ ,則 $\cos \theta$ = ?
	(A) $\frac{-1}{5}$	(B) $\frac{-1}{3}$	(C) $\frac{1}{5}$	(D) $\frac{1}{3}$	(E) $\frac{4}{5}$
10.		$\frac{a}{x-1} + \frac{b}{x+1}$, \sharp	Pf(x) 為一次式且	a,b 為常數,求a+	- <i>b</i> = ?
			(C) 1		(E) 3

背面尚有題目

11. 若
$$\lim_{x\to 1} \frac{1}{x-1} = -\frac{1}{4}$$
,則 $a+b=?$
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

12. $\lim_{b\to 0} \frac{(4+3h)^2-4^2}{\sqrt{4+3h-2}} = ?$
(A) 0 (B) 16 (C) 32 (D) 64 (E) 不存在

13. 若 拋物線 $y=x^2-ax+3$ 與直線 $3x+y+1=0$ 不相交且 a 為整數,則 a 有幾種可能?
(A) 3 (B) 4 (C) 5 (D) 6 (E) 7

14. 直線 $ax-y=b$ 與 $x+2y=3$ 垂直且過點 $(2,3)$,則 $ab=?$
(A) -4 (B) -2 (C) 0 (D) 2 (E) 4

15. 設 $f(x) = \frac{1}{\sqrt{x-2}}$, $g(x) = 2+x-x^2$,則 c 成函數 $f \circ g$ 的定義 域為何?
(A) Ø(空集合) (B) $0 < x < 1$ (C) $0 \le x \le 1$ (D) $x < 0$ 或 $x > 1$

16. 若直線 L 的新率為 $\frac{2}{3}$ 且與 x 軸所 夾之貌 角為 θ ,則 $\cos(\frac{3\pi}{2} - \theta) = ?$
(A) $\frac{-3}{\sqrt{13}}$ (B) $\frac{-2}{\sqrt{13}}$ (C) $\frac{-1}{\sqrt{13}}$ (D) $\frac{2}{\sqrt{13}}$ (E) $\frac{3}{\sqrt{13}}$

17. 已知 $A(3.5)$, $B(-1.2)$, $C(4.7)$ 為坐標平面上三點,則 $\overline{Ab} + 3\overline{bC} + 3\overline{CA} = ?$
(A) $(-4, -3)$ (B) $(-8, -6)$ (C) (4.3) (D) (8.6) (E) (12.9)

18. 若一拋物線通過 (-2.19) , (6.19) , (1.4) 三點,則此拋物線的頂點坐標為何?
(A) (2.1) (B) (2.3) (C) (2.5) (D) (2.6) (E) (2.7)

19. 若 $f(x) = \log_{\sqrt{5}}(2x^3 - 5x^2 - 10x + 8)$,則 $f(2-\sqrt{3}) = ?$
(A) -4 (B) -2 (C) 1 (D) 2 (E) 4

20. 若一橢圓之焦點為 $(1-\sqrt{3}, -1)$ 與 $(1+\sqrt{3}, -1)$ 且過 $(3, -2)$,則此橢圓長軸之長為何?

解答:

1	2	3	4	5	6	7	8	9	10
A	В	D	С	Е	A	Е	A	A	C
11	12	13	14	15	16	17	18	19	20
D	С	Е	D	В	В	D	В	D	D

選擇題:20題單選,每題5分,答錯不倒扣。

1.	最小值為何?	•		$+ y^2 + 16y + 55 = 0$ \pm	
	(A) 5	(B) 6	(C) 7	(D) 8	(E) 9
2.	若橢圓方程式 \sqrt{x}	$(z-1)^2 + (y-5)^2$	$+\sqrt{(x-1)^2+(y+3)^2}$		豆軸長為何?
	(A) 2	(B) 3	(C) 4	(D) 5	(E) 6
3.	若直線L與直線5 ,則L的方程式為		且 L 通過兩直線 $2x$	-3y+1=0 與 $4x+5$	5y-9=0的交點
	(A) $5x - 7y = -2$ (D) $7x + 5y = 12$		5x + 7y = 12 $7x + 5y = 20$	(C) 7 <i>x</i>	-5y=2
4.	$\log_2 216 - \log_4 9$ (A) 2	$-\log_2 9 = ?$ (B) 3	(C) 4	(D) 5	(E) 6
5.	設 α , β 為方程式 β	$x^2 - 2x - 1 = 0 \approx \pm$	根,則 $\frac{\alpha^2\beta + \alpha\beta^2}{\alpha^2 + \beta^2}$	=?	
	(A) – 4	(B) $-\frac{1}{2}$	(C) $-\frac{1}{3}$	(D) $\frac{1}{6}$	(E) $\frac{1}{2}$
6.	設 $\frac{\pi}{2} < \theta \le \pi$ 且si	$\sin \theta = \frac{3}{5}$, $\Re \sqrt{2 + 1}$	$2\cos 2\theta = ?$		
	(A) 0	(B) $\frac{4}{5}$	(C) 1	(D) $\frac{6}{5}$	(E) $\frac{8}{5}$
7.	已知 $f(x)$ 為二次。	函數且 $f(x) > 0$ 的角	解為 $-1 < x < \frac{1}{2}$,則	f(2x) < 0 的解為何	1?
	(A) x < -1 或 x	$> \frac{1}{2}$ (B) $x <$	-2 或 $x > 1$ (0	C) $-2 < x < 1$	
	(D) $x < -\frac{1}{2}$ \vec{x}	$x > \frac{1}{4}$ (E) $-\frac{1}{2}$	$< x < \frac{1}{4}$		
8.	設 α, β 為方程式 1	$\log_3 x = 5 - \frac{4}{\log_3 x} \stackrel{>}{\sim}$	上兩根,則 $\alpha + \beta =$?	
	(A) 84	(B) 85	(C) 86	(D) 87	(E) 88
9.		-45 = 0 ,則 $x = $ (B) 2		(D) 4	(E) 5

背面尚有題目

10.	下列何者正確?				
	(A) $\sin \frac{3\pi}{4} < \cos$	$\frac{3\pi}{4}$ (B) $\cos($	$(-\theta) = -\cos\theta$	(C) $1 + \sec^2 \theta$	$= \tan^2 \theta$
	(D) $\sec(\frac{\pi}{2} + \theta) =$	$=-\csc\theta$ (E) $\sin(\theta)$	$\alpha + \beta) = \sin \alpha \sin \beta$	$\beta + \cos \alpha \cos \beta$	
11.	若13 ⁵ -11·13 ⁴ -2	$25 \cdot 13^3 - 12 \cdot 13^2 + a$	$\cdot 13 - 13 = 0 , $	=?	
	(A) - 12	(B) -11	(C) 1	(D) 7	(E) 17
12.		為 $x = ay^2 + b$, 其中	' a > 0 。若此拋物約	泉過 $(0,\sqrt{2})$ 且焦點	座標為 $(-\frac{1}{2},0)$
	則 $a-b=?$		_		_
	(A) $\frac{1}{2}$	(B) $\frac{3}{2}$	(C) $\frac{7}{4}$	(D) 2	(E) $\frac{7}{2}$
13.	若 $f(x) = x^3 - 4x^2$	$x^2 + 2x + k \perp f(1 + \sqrt{1 + x})$	$\sqrt{3}$) = 2 , $\Re k$ = ?		
		(B) -2		(D) 3	(E) 6
14.	已知向量 \bar{a} 、 \bar{b} 之	.夾角為θ,若 ā =	$2 \cdot \vec{b} = 4$ 且 $(3\vec{a} +$	$(2\vec{b})\cdot(2\vec{a}-\vec{b})=-4$,則 <i>θ</i> =?
	(A) 0	(B) $\frac{\pi}{6}$	(C) $\frac{\pi}{4}$	(D) $\frac{\pi}{3}$	(E) $\frac{\pi}{2}$
15.	若雙曲線方程式	$x^2 - 2x - 4y^2 - 3 = 0$	之二頂點座標為(6	(a,b)與 (c,d) ,則 (a,b)	+b+c+d=?
	(A) 0	(B) 1	(C) 2	(D) 3	(E) 4
16.	設(a,b)滿足3x+	$4y = 12$, $\Re(a-4)^2$	+(b-5)2最小值為	何?	
	(A) 4	(B) 8	(C) 12	(D) 16	(E) 20
17.		f(x)的餘式為 $2x$ -	$+5$ 且 x^2+2x-3 除	g(x)的餘式為3x-	1,則 <i>x</i> −1除
	[f(x) + g(x)]的飲		(C) 5	(D) 7	(E) 0
		(B) 4		(D) 7	(E) 9
18.	設 $\pi < \theta \le \frac{3\pi}{2}$ 且	$18\sin^2\theta + 9\cos\theta -$	$-13=0$,則 $\tan \theta$	= ?	
	(A) $\frac{\sqrt{2}}{4}$	$(B) \ \frac{\sqrt{2}}{2}$	(C) $\sqrt{2}$	(D) $2\sqrt{2}$	(E) $3\sqrt{2}$
19.	令向量 ā =< 1,1 >	$\vec{b} = <2-x, y-1>$	。若 $y > 0$ 、 $2 \vec{a} =$	$\left \vec{b} \right $ 且 \vec{a} 上 \vec{b} ,則(x	(x, y) = ?
		(B) (3, 2)			(E) $(6,5)$
20.	$\frac{-7x + 22}{(x + 4)(x - 1)^2} =$	$\frac{A}{x+4} + \frac{B}{x-1} + \frac{A}{(x+4)^2}$	$\frac{C}{(A+B)^2}$, $RA+B$	+ C = ?	
		,	,	(D) 5	(E) 6
	(Λ) Δ	(B) 3	(C) +	(D) 3	(\mathbf{E}) 0

,

1	2	3	4	5	6	7	8	9	10
A	E	C	В	C	E	D	A	В	D
11	12	13	14	15	16	17	18	19	20
A	В	Е	D	С	D	Е	D	С	В

106 學年度四技新生基礎數學第二次測驗(A 卷)

選擇題:20題單選,每題5分,答錯不倒扣。

1. 方程式 $2 \sin x = x$ 有幾個解?

	(A) 2	(B) 3	(C) 4	(D) 5	(E) 6
2.	設 x 為實數 , 求湖 (A) $x < 2$ 或 $x > 0$ (D) $-2 < x < 4$	3	$12 + 8x - x^{2}$, $x^{2} < 4$ (B) $x > 3$ (E) $x > 4$		3 < <i>x</i> < 4
3.	$\cos 127^{\circ} \cos 23^{\circ} + (A) - \frac{\sqrt{3}}{2}$	$\cos 217^{\circ} \cos 67^{\circ} = \cos (B) - \frac{\sqrt{2}}{2}$	_	(D) $\frac{1}{2}$	$(E) \ \frac{\sqrt{3}}{2}$
4.	不等式 $\log_2(x-\frac{1}{2})$	$) > \log_4(2-x) - 1 \stackrel{>}{\sim}$	こ解為何?		
	(A) $\frac{1}{2} < x < 2$		(B) $1 < x < \frac{3}{2}$		(C) $\frac{3}{2} < x < 2$
	(D) $\frac{-1}{4} < x < 1$		(E) $1 < x < 2$		
5.		$\frac{1}{3x+1}$			
	(A) $\frac{1}{48}$	(B) $\frac{1}{40}$	(C) $\frac{1}{32}$	(D) $\frac{1}{24}$	(E) $\frac{1}{16}$
6.	若 $\frac{1}{\alpha}$ 和 $\frac{1}{\beta}$ 為方程	式 $x(x-6)=-2$ 的	雨根且 $\alpha > \beta$,則 α	$\alpha^2\beta - \alpha\beta^2 = ?$	
	(A) $\frac{\sqrt{7}}{2}$	(B) $\frac{\sqrt{7}}{3}$	(C) $\frac{\sqrt{7}}{4}$	(D) $\frac{\sqrt{7}}{5}$	(E) $\frac{\sqrt{7}}{6}$
7.	已知橢圓方程式為	$\frac{(x-1)^2}{x} + \frac{(y-2)^2}{4}$	2 —=1且其短軸平行 _.	y 軸,若 <i>P(k, 2)</i> 為	橢圓上一點且F
		а	a為整數,則a有幾		
	(A) 3	(B) 4	(C) 5	(D) 6	(E) 7
8.	設直線L通過兩點 方程式為ax+by=		, 直線 M 為通過點 (-	-1,1)且與L垂直之	直線,若M其
	(A) -7			, ,	(E) 7
9.		$\mathbb{L} \log_a(\sqrt{2}-1) =$	$= 2x + \frac{a^{-3x} - a^{3x}}{a^{-x} + a^x} =$	· ?	
	(A) $2 - \sqrt{2}$	(B) $3 - \sqrt{2}$	(C) $1 + \sqrt{2}$	(D) $2 + \sqrt{2}$	(E) $3 + \sqrt{2}$

10.	若拋物線 $x = \frac{1}{64}$)	v^2 與直線 $x - \frac{1}{k}y + 1$	=0有交點且 k 為	整數,則 k 有幾種可	丁能?
	(A) 3	(B) 4	(C) 5	(D) 8	(E) 9
11.	已知向量 a =< 3,	1 > b = <2, 4 >	。若 $ \bar{a}+t\bar{b} $ 之最小	值為何?	
	(A) $\sqrt{2}$	(B) $\sqrt{3}$	(C) 2	(D) $\sqrt{5}$	(E) $\sqrt{6}$
12.		$(\frac{b}{a}) = \frac{3}{4} , $	=?		
	(A) 6	•	(C) 12	` ´	(E) 18
13.		$\frac{2}{x} = f(x) + \frac{a}{x-1} + \frac{a}{x^2}$	$\frac{bx+c}{a^2+x+1}$, 其中 $f(x)$)為一次式且 $a \cdot b$	為常數,則
		(B) -1	(C) 0	(D) 1	(E) 2
14.	已知向量 ā =2、	$ \vec{b} = 3 \cdot \vec{c} = 2$ 且	$ \vec{a} + \vec{b} + 2\vec{c} = 0$,貝	$ \vec{a} \vec{a} + 2\vec{b} + 5\vec{c} = ?$	
	(A) $\sqrt{\frac{21}{2}}$	(B) $\sqrt{\frac{23}{2}}$	(C) $\sqrt{\frac{24}{2}}$	(D) $\sqrt{\frac{26}{2}}$	(E) $\sqrt{\frac{27}{2}}$
15.	假設 P(2,0)、 Q($(0,2)$ 和 R 為圓 x^2 +	$-y^2 = 4$ 上三點,貝	川三角形 PQR 最大	面積為
	(A) 4	(B) $2 + 2\sqrt{2}$	(C) $4 + \sqrt{2}$	(D) $4\sqrt{2}$	(E) $4 + 4\sqrt{2}$
16.				交角平分線方程式	
	•	(B) 7 (E) 7	•	(C)	x + y = -9
			,		
17.		$g(x)$, $\sharp + g(x) =$	$x^4 + 5x^3 + 6x^2 + x$	$f(\sqrt{3}-1) = -1$	= ?
	(A) $\frac{1}{6}$	(B) $\frac{1}{3}$	(C) $\frac{5}{6}$	(D) 1	(E) $\sqrt{3}$
18.	函數 $f(x) = \sin^2 x$	$x - \cos x + 1$ 的最大	(值為何?		
	_	_		0	
	(A) $\frac{5}{4}$	(B) $\frac{7}{4}$	(C) 2	(D) $\frac{9}{4}$	(E) 3
	T	T		(D) $\frac{9}{4}$	(E) 3
	T	$f(g(x)) = \frac{x+1}{2x+1} ,$		(D) $\frac{9}{4}$ (D) 4	(E) 3 (E) 5
19.		$f(g(x)) = \frac{x+1}{2x+1},$ (B) 2 $+32 = 0 \text{ 的雨根}$	求 g(1) = ? (C) 3 為α和β,則α+β	(D) 4 $\beta = ?$	(E) 5
19.		$f(g(x)) = \frac{x+1}{2x+1},$ (B) 2	求 g(1) = ? (C) 3 為α和β,則α+β	(D) 4 $\beta = ?$	

解答:

1	2	3	4	5	6	7	8	9	10
В	С	A	Е	D	A	С	Е	В	D
11	12	13	14	15	16	17	18	19	20
D	A	С	Е	В	D	A	D	Е	С

?

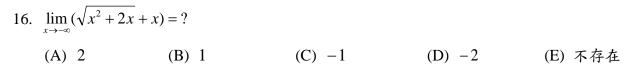
選擇題:20題單選,每題5分,答錯不倒扣。

1. 設橋園 $9x^2 + 16y^2 - 18x - 135 = 0$ 的雨焦點為 $F_1 \times F_2 \times P$ 在橋園上。在 (A) 1 (B) 3 (C) 5 (D) 6 2. 若 α , β 為方程式 $x + \frac{2}{x} + 1 = 0$ 的雨根、則 $\alpha^3 \beta - \alpha^2 \beta^2 + \alpha \beta^3 = ?$ (A) -10 (B) -6 (C) -2 (D) 6 3. 設 $f(x) = x^3 + \alpha x^2 + bx + c \cdot $ 其中 $a \cdot b \cdot c$ 皆為實數。若不等式 $f(x) < f(2) = 0 \cdot $ 則 $3a + b + 2c = ?$ (A) 5 (B) 6 (C) 7 (D) 8 4. 若 ΔABC 中,向量 $\overline{AB} = <3$, $-2 > \sqrt{BC} = < x$, $-1 > \sqrt{CA} = <4$, $y > $,且 ABC 的一位 (B) -4 (C) 4 (D) 10 5. 若 $\sin \theta - \cos \theta = \frac{1}{2}$,則 $\sin \theta + \cos \theta$ 可能為下列何者? (A) -1 (B) $-\frac{1}{2}$ (C) $-\frac{1}{2}$ (D) $-\frac{\sqrt{5}}{2}$ (A) $-\frac{1}{2}$ (B) $-\frac{1}{2}$ (C) 0 (D) 1 7. 設 ΔABC 中, $\angle BAC$ 為鈍角, $ AB = 6 \cdot AC = 7 \cdot \angle ABC$ 的面積為 (A) -28 (B) -14 (C) -7 (D) 14 8. 若 $\cot \frac{5\pi}{8} = k$,則 $\cot \frac{\pi}{8} = ?$ (A) $-\frac{k}{\sqrt{1+k^2}}$ (B) $-\frac{\sqrt{1+k^2}}{k}$ (C) k (D) $\frac{k}{\sqrt{1+k^2}}$ 9. 設 $x \cdot y \cdot z$ 皆為實數,且 $xyz \ne 0 \cdot \angle Bx = 9^y = 5^z = a \cdot \angle B \cdot ABC$ (D) 800						
2. 若 α , β 為方程式 $x + \frac{2}{x} + 1 = 0$ 的雨根,則 $\alpha^3 \beta - \alpha^2 \beta^2 + \alpha \beta^3 = ?$ (A) -10 (B) -6 (C) -2 (D) 6 3. 設 $f(x) = x^3 + ax^2 + bx + c$,其中 $a \cdot b \cdot c$ 皆為實數。若不等式 $f(x) < f(2) = 0$,則 $3a + b + 2c = ?$ (A) 5 (B) 6 (C) 7 (D) 8 4. 若 ΔABC 中,向量 $\overline{AB} = <3$, $-2 > \sqrt{BC} = < x$, $-1 > \sqrt{\overline{CA}} = <4$, $y > \sqrt{g}$ (A) -10 (B) -4 (C) 4 (D) 10 5. 若 $\sin \theta - \cos \theta = \frac{1}{2}$,則 $\sin \theta + \cos \theta$ 可能為下列何者? (A) -1 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) $\frac{\sqrt{5}}{2}$ 6. 若 拋物線 $y = 2x^2 + bx + c$ 的 頂點 β (1, 4),則 $2b + c = ?$ (A) -2 (B) -1 (C) 0 (D) 1 7. 設 ΔABC 中, $\angle BAC$ 為鈍角, $ \overline{AB} = 6 \times \overline{AC} = 7$ 。若 ΔABC 的 面積 β (A) -28 (B) -14 (C) -7 (D) 14 8. 若 $\cot \frac{5\pi}{8} = k$,則 $\csc \frac{\pi}{8} = ?$ (A) $-\frac{k}{\sqrt{1+k^2}}$ (B) $-\frac{\sqrt{1+k^2}}{k}$ (C) k (D) $\frac{k}{\sqrt{1+k^2}}$ 9. 設 $x \cdot y \cdot z$ 皆為實數,且 $xyz \neq 0$ 。若 $8^x = 9^y = 5^z = a$,且 $\frac{1}{3x} + \frac{1}{2y} + \frac{1}{2}$	1.	設橢圓 $9x^2 + 16y^2 -$	-18x-135=0的兩焦		P在橢圓上。若 $\overline{PF_1}$	$=2$,则 $\overline{PF_2}=?$
(A) -10 (B) -6 (C) -2 (D) 6 3. 設 $f(x) = x^3 + ax^2 + bx + c$, 其中 $a \cdot b \cdot c$ 皆為實數。若不等式 $f(x) < f(2) = 0$,則 $3a + b + 2c = ?$ (A) 5 (B) 6 (C) 7 (D) 8 4. 若 ΔABC 中,向量 $\overline{AB} = <3$, $-2 > \sqrt{BC} = < x$, $-1 > \sqrt{CA} = <4$, $y > \sqrt{2}$ (A) -10 (B) -4 (C) 4 (D) 10 5. 若 $\sin \theta - \cos \theta = \frac{1}{2}$,則 $\sin \theta + \cos \theta$ 可能為下列何者? (A) -1 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) $\frac{\sqrt{5}}{2}$ 6. 若拋物線 $y = 2x^2 + bx + c$ 的頂點為 $(1, 4)$,則 $2b + c = ?$ (A) -2 (B) -1 (C) 0 (D) 1 7. 設 ΔABC 中, $\angle BAC$ 為鈍角, $ \overline{AB} = 6 \cdot \overline{AC} = 7 \circ \angle ABC$ 的面積為 $(A) - 28$ (B) -14 (C) -7 (D) 14 8. 若 $\cot \frac{5\pi}{8} = k$,則 $\csc \frac{\pi}{8} = ?$ (A) $-\frac{k}{\sqrt{1+k^2}}$ (B) $-\frac{\sqrt{1+k^2}}{k}$ (C) k (D) $\frac{k}{\sqrt{1+k^2}}$ 9. 設 $x \cdot y \cdot z$ 皆為實數,且 $xyz \neq 0$ $\circ \angle Ba^x = 9^y = 5^z = a$,且 $\frac{1}{3x} + \frac{1}{2y} + \frac{1}{2}$		(A) 1	(B) 3	(C) 5	(D) 6	(E) 8
3. 設 $f(x) = x^3 + ax^2 + bx + c$, 其中 a 、 b 、 c 皆為實數 。 若不等式 $f(x) < f(2) = 0$,則 $3a + b + 2c = ?$ (A) 5 (B) 6 (C) 7 (D) 8 4. 若 ΔABC 中 ,向量 $\overline{AB} = <3$, $-2 > \overline{BC} = < x$, $-1 > \overline{CA} = <4$, $y > \overline{QA} = 4$	2.	$ \hat{\alpha}$ $, \beta$ 為方程式 x	$+\frac{2}{x}+1=0$ 的雨根,	則 $\alpha^3\beta - \alpha^2\beta^2 + \alpha$	$\nu\beta^3=?$	
f(2) = 0 ,則 $3a + b + 2c = ?$ (A) 5 (B) 6 (C) 7 (D) 8 4.		(A) -10	(B) -6	(C) -2	(D) 6	(E) 10
4. 若 $\triangle ABC$ 中,向量 \overline{AB} =< 3, -2 > 、 \overline{BC} =< x , -1 > 、 \overline{CA} =< 4, y > ,貝 (A) -10 (B) -4 (C) 4 (D) 10 5. 若 $\sin \theta - \cos \theta = \frac{1}{2}$,則 $\sin \theta + \cos \theta$ 可能為下列何者? (A) -1 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) $\frac{\sqrt{5}}{2}$ 6. 若拋物線 $y = 2x^2 + bx + c$ 的頂點為 (1, 4) ,則 $2b + c = ?$ (A) -2 (B) -1 (C) 0 (D) 1 7. 設 $\triangle ABC$ 中, $\angle BAC$ 為鈍角, $ \overline{AB} = 6$ 、 $ \overline{AC} = 7$ 。若 $\triangle ABC$ 的面積為 (A) -28 (B) -14 (C) -7 (D) 14 8. 若 $\cot \frac{5\pi}{8} = k$,則 $\csc \frac{\pi}{8} = ?$ (A) $-\frac{k}{\sqrt{1+k^2}}$ (B) $-\frac{\sqrt{1+k^2}}{k}$ (C) k (D) $\frac{k}{\sqrt{1+k^2}}$ 9. 設 x 、 y 、 z 皆為實數 ,且 $xyz \neq 0$ 。若 $8^x = 9^y = 5^z = a$,且 $\frac{1}{3x} + \frac{1}{2y} + \frac{1}{2y}$				ウ、c 皆為實數。若	不等式 $f(x) < 0$ 之	解為 x < -2 且
(A) -10 (B) -4 (C) 4 (D) 10 5.		(A) 5	(B) 6	(C) 7	(D) 8	(E) 9
5. 若 $\sin \theta - \cos \theta = \frac{1}{2}$,則 $\sin \theta + \cos \theta$ 可能為下列何者? (A) -1 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) $\frac{\sqrt{5}}{2}$ 6. 若拋物線 $y = 2x^2 + bx + c$ 的頂點為 (1, 4) ,則 $2b + c = ?$ (A) -2 (B) -1 (C) 0 (D) 1 7. 設 ΔABC 中, $\angle BAC$ 為鈍角, $ \overline{AB} = 6$ 、 $ \overline{AC} = 7$ 。若 ΔABC 的面積為 (A) -28 (B) -14 (C) -7 (D) 14 8. 若 $\cot \frac{5\pi}{8} = k$,則 $\csc \frac{\pi}{8} = ?$ (A) $-\frac{k}{\sqrt{1+k^2}}$ (B) $-\frac{\sqrt{1+k^2}}{k}$ (C) k (D) $\frac{k}{\sqrt{1+k^2}}$ 9. 設 x 、 y 、 z 皆為實數 ,且 $xyz \neq 0$ 。若 $8^x = 9^y = 5^z = a$,且 $\frac{1}{3x} + \frac{1}{2y} + \frac{1}{2}$	4.	若 ΔABC 中,向量	$\overline{AB} = <3, -2>$ \overline{B}	$\overrightarrow{C} = \langle x, -1 \rangle \cdot \overrightarrow{CA}$	A =< 4, y > ,則 y	x = ?
(A) -1 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) $\frac{\sqrt{5}}{2}$ 6. 若拋物線 $y = 2x^2 + bx + c$ 的頂點為 (1, 4) ,則 $2b + c = ?$ (A) -2 (B) -1 (C) 0 (D) 1 7. 設 $\Delta ABC + \Delta BC$ 為鈍角, $ \overline{AB} = 6 \cdot \overline{AC} = 7 \cdot \overline{A} \Delta ABC$ 的面積為 (A) -28 (B) -14 (C) -7 (D) 14 8. 若 $\cot \frac{5\pi}{8} = k$,則 $\csc \frac{\pi}{8} = ?$ (A) $-\frac{k}{\sqrt{1+k^2}}$ (B) $-\frac{\sqrt{1+k^2}}{k}$ (C) k (D) $\frac{k}{\sqrt{1+k^2}}$ 9. 設 $x \cdot y \cdot z$ 皆為實數,且 $xyz \neq 0$ 。若 $8^x = 9^y = 5^z = a$,且 $\frac{1}{3x} + \frac{1}{2y} + \frac{1}{2}$					(D) 10	(E) 20
6. 若拋物線 $y = 2x^2 + bx + c$ 的頂點為 $(1, 4)$,則 $2b + c = ?$ (A) -2 (B) -1 (C) 0 (D) 1 7. 設 ΔABC 中, $\angle BAC$ 為鈍角, $ \overline{AB} = 6$ 、 $ \overline{AC} = 7$ 。若 ΔABC 的面積為 $(A) - 28$ (B) -14 (C) -7 (D) 14 8. 若 $\cot \frac{5\pi}{8} = k$,則 $\csc \frac{\pi}{8} = ?$ (A) $-\frac{k}{\sqrt{1+k^2}}$ (B) $-\frac{\sqrt{1+k^2}}{k}$ (C) k (D) $\frac{k}{\sqrt{1+k^2}}$ 9. 設 x 、 y 、 z 皆為實數 ,且 $xyz \neq 0$ 。若 $8^x = 9^y = 5^z = a$,且 $\frac{1}{3x} + \frac{1}{2y} + \frac{1}{2}$	5.		,則 $\sin\theta + \cos\theta$ 可負	能為下列何者?		
(A) -2 (B) -1 (C) 0 (D) 1 7. 設 $\triangle ABC$ 中, $\angle BAC$ 為鈍角, $ \overline{AB} = 6$ 、 $ \overline{AC} = 7$ 。 若 $\triangle ABC$ 的面積為 $(A) -28$ (B) -14 (C) -7 (D) 14 8. 若 $\cot \frac{5\pi}{8} = k$,則 $\csc \frac{\pi}{8} = ?$ (A) $-\frac{k}{\sqrt{1+k^2}}$ (B) $-\frac{\sqrt{1+k^2}}{k}$ (C) k (D) $\frac{k}{\sqrt{1+k^2}}$ 9. 設 x 、 y 、 z 皆為實數,且 $xyz \neq 0$ 。 若 $8^x = 9^y = 5^z = a$,且 $\frac{1}{3x} + \frac{1}{2y} + \frac{1}{2}$		(A)-1	$(B) - \frac{1}{2}$	$(C)\frac{1}{2}$	$(D)\frac{\sqrt{5}}{2}$	$(E)\frac{\sqrt{7}}{2}$
7. 設 $\triangle ABC$ 中, $\angle BAC$ 為鈍角, $ \overline{AB} = 6$ 、 $ \overline{AC} = 7$ 。若 $\triangle ABC$ 的面積為 (A) -28 (B) -14 (C) -7 (D) 14 8. 若 $\cot \frac{5\pi}{8} = k$,則 $\csc \frac{\pi}{8} = ?$ (A) $-\frac{k}{\sqrt{1+k^2}}$ (B) $-\frac{\sqrt{1+k^2}}{k}$ (C) k (D) $\frac{k}{\sqrt{1+k^2}}$ 9. 設 x 、 y 、 z 皆為實數,且 $xyz \neq 0$ 。若 $8^x = 9^y = 5^z = a$,且 $\frac{1}{3x} + \frac{1}{2y} + \frac{1}{2y} + \frac{1}{2y}$	6.	若拋物線 $y = 2x^2 +$	·bx+c的頂點為(1, 4	4) ,則 $2b+c=?$		
(A) -28 (B) -14 (C) -7 (D) 14 8. 若 $\cot \frac{5\pi}{8} = k$,則 $\csc \frac{\pi}{8} = ?$ (A) $-\frac{k}{\sqrt{1+k^2}}$ (B) $-\frac{\sqrt{1+k^2}}{k}$ (C) k (D) $\frac{k}{\sqrt{1+k^2}}$ 9. 設 $x \cdot y \cdot z$ 皆為實數,且 $xyz \neq 0$ 。若 $8^x = 9^y = 5^z = a$,且 $\frac{1}{3x} + \frac{1}{2y} + \frac{1}{2y}$		(A) -2	(B) −1	(C) 0	(D) 1	(E) 2
8. 若 $\cot \frac{5\pi}{8} = k$,則 $\csc \frac{\pi}{8} = ?$ (A) $-\frac{k}{\sqrt{1+k^2}}$ (B) $-\frac{\sqrt{1+k^2}}{k}$ (C) k (D) $\frac{k}{\sqrt{1+k^2}}$ 9. 設 $x \cdot y \cdot z$ 皆為實數,且 $xyz \neq 0$ 。若 $8^x = 9^y = 5^z = a$,且 $\frac{1}{3x} + \frac{1}{2y} + \frac{1}{2y}$	7.	設 △ABC 中 , ∠BA	$ C $ 為鈍角, $ \overline{AB} = 6$	$\left \overline{AC} \right = 7 \circ \stackrel{\text{``}}{=} \Delta A$	BC 的面積為 $7\sqrt{5}$,则 $\overline{AB} \cdot \overline{AC} = ?$
8 8 (A) $-\frac{k}{\sqrt{1+k^2}}$ (B) $-\frac{\sqrt{1+k^2}}{k}$ (C) k (D) $\frac{k}{\sqrt{1+k^2}}$ 9. 設 $x \cdot y \cdot z$ 皆為實數,且 $xyz \neq 0$ 。若 $8^x = 9^y = 5^z = a$,且 $\frac{1}{3x} + \frac{1}{2y} + \frac{1}{2y}$		(A) -28	(B) -14	(C) -7	(D) 14	(E) 28
9. 設 $x \cdot y \cdot z$ 皆為實數,且 $xyz \neq 0$ 。若 $8^x = 9^y = 5^z = a$,且 $\frac{1}{3x} + \frac{1}{2y} + \frac{1}{3x}$	8.		$\csc\frac{\pi}{8} = ?$			
		$(A) -\frac{k}{\sqrt{1+k^2}}$	$(B) - \frac{\sqrt{1+k^2}}{k}$	(C) k	(D) $\frac{k}{\sqrt{1+k^2}}$	$(E) \frac{\sqrt{1+k^2}}{k}$
(A) 500 (B) 600 (C) 700 (D) 800	9.	設 $x \cdot y \cdot z$ 皆為	實數,且 <i>xyz</i> ≠0。ラ		$\mathbb{E}\frac{1}{3x} + \frac{1}{2y} + \frac{1}{z} = \frac{1}{2}$,則 a 為何?
		(A) 500	(B) 600	(C) 700	(D) 800	(E) 900

背面尚有試題

10.		a^2+b^2 的最小值為何	ſ?		
	(A) 10	(B) 15	(C) 20	(D) 25	(E) 30
11.	設 $f(n) = \frac{1}{\sqrt{n+1}}$	\sqrt{n} , \$ $f(1) + f(2)$	$+ f(3) + \dots + f(15)$	= ?	
	(A) 1	(B) 2	(C) 3	(D) 4	(E) 5
12.	若 $ x^2 - x - 2 $ 除 $ x^4 $ (A) 145	$+x^3 + ax^2 + x + b$ to (B) 146		$a^2 + b^2 = ?$ (D) 148	(E) 149
13.		$+5x^2-3x+16$,则	$f(5-2\sqrt{3})=?$		
	(A) $6-4\sqrt{3}$	(B) $8 - 6\sqrt{3}$	(C) $10 - 8\sqrt{3}$	(D) $12-10\sqrt{3}$	(E) $14 - 12\sqrt{3}$
14.	$(A) -\sqrt{2} < k < \sqrt{2}$	$kx + 2$ 恆在直線 $x + \sqrt{2}$ (B) $k < -\sqrt{2}$ (E) $k < -3$ 頁	或 $k > \sqrt{2}$ (C)		
15.	$\frac{\log 3 \cdot \log_6 25 \cdot \log_7}{\log_7 5 \cdot \log 2 \cdot \log_6 2}$	$\frac{8}{27} = ?$			
	(A) 1	(B) 2	(C) 3	(D) 4	(E) 5
16.	設兩向量 $\vec{a} \cdot \vec{b}$ 的	为夾角為 $\frac{\pi}{3}$ 。若 $ \bar{a} =$	$3 \cdot \vec{b} = 2$,則 $ 3\vec{a} $	$ \vec{b}-4\vec{b} =?$	
		(B) $\sqrt{53}$			(E) 9
17.		$= \frac{-1}{x+2} + \frac{2}{x+1} + \frac{1}{(x+1)^2}$	$\frac{1}{1)^2}$,則 $3a + 2b + c$	=?	
	(A) 16	(B) 17	(C) 18	(D) 19	(E) 20
18.	若 $\log(1+\cos\theta)+1$	$\log(\frac{1}{4} - \cos\theta) = \log(-\frac{1}{4} - \cos\theta)$	$-\frac{3}{4}\cos\theta$),則 θ 可能	能為下列何者?	
	$(A) -\frac{\pi}{6}$	(B) $\frac{\pi}{6}$	(C) $\frac{\pi}{3}$	(D) $\frac{2\pi}{3}$	(E) $\frac{5\pi}{6}$
19.	設 $P(4,3)$ 、 $Q(4,-$	-2) 、R(1,2) 為平面	上三點,求點 P 到	直線 \overrightarrow{QR} 的距離。	
	(A) 2	(B) $\sqrt{5}$	(C) 3	(D) 5	(E) $\sqrt{26}$
20.	若α為方程式log	$f_3(x+2) = 2 - \log_3(x+2)$	-6)之根,則下列(可者為α之倍數?	
	(A) 6	(B) 8	(C) 10	(D) 12	(E) 14

1	2	3	4	5	6	7	8	9	10
D	A	В	D	Е	A	A	В	Е	C
11	12	13	14	15	16	17	18	19	20
С	A	C	D	В	D	C	D	C	Е


107 學年度四技新生基礎數學第二次測驗(A 卷)

選擇題:20 題單選,每題5分,答錯不倒扣。

1.	設拋物線 $y = ax^2 +$	$bx-c$, $a \cdot b$	、 c 皆為正實數,則下	列敘述何者正確	: ?
	(A) 開口向下	(I	B) 與 x 軸無交點	(C) 交於正	y 軸
	(D) 頂點在第三象	注限 (I	E) 準線平行 y 軸		
2	450 5 212 4 26	3 10 0 (0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
2.	$(150x^5 - 312x^4 + 28$			(D) 1	(E) 2
	(A) -19	(B) -3	(C) -1	(D) 1	(E) 3
3.	設 $Q(a,b)$ 為直線 L	: 2x - y = 4 for P	(1, 3) 的最近點,則 a	+ <i>b</i> = ?	
	(A) 2	(B) $\frac{7}{2}$	(C) 5	(D) $\frac{13}{2}$	(E) 7
4.	設有一橢圓中心在 軸長為何?	(1,1),其長軸平	平行 x 軸且長軸長為短	i軸長的3倍,並	通過(4,0),則短
		(B) $2\sqrt{3}$	(C) $2\sqrt{5}$	(D) $2\sqrt{6}$	(E) $4\sqrt{2}$
5.	芸 直 線 3x + 4v + k =	= 0 與圖 x ² + v ² -	+8x+16y-20=0相切	7月 k < () ,則 k =	- 9
			(C) -4		
6.	設 $\vec{a} = \langle 1, t-1 \rangle$ 、 $\vec{b} =$	$=\langle 2t-2,t+2\rangle$ °	若 $\vec{a} \perp \vec{b}$ 且 $ \vec{b} $ >2,貝	$\Downarrow t = ?$	
	(A) -4	(B) -1	(C) 1	(D) 2	(E) 4
7.	設 $f(x) = (5^{2x} + 5^{-2x})$	$(5^x + 5^{-x}) + 3^x$,則 $f(x)$ 的最小值為	为何?	
	(A) 1	(B) 2	(C) 3	(D) 4	(E) 5
8.	不等式 x^2-4x+2	≥ x-2 的解為何	1?		
			(B) $(-\infty, 0] \cup [2, \infty)$ (E) $(-\infty, 1] \cup [4, \infty)$	(C) (-c	$[0,0]\cup[4,\infty)$
9.	設 $a = \log \frac{4}{3}$ 、 $b = \log \frac{4}{3}$	$\log \frac{2}{3}$,則 $\log 24$ =	= ?		
	(A) $2a-5b$	(B) $3a-5b$	(C) $4a - 5b$	(D) 4a-4b	(E) $4a - 3b$
10.	設方程式 $3^{x^2} \cdot (3^x)^2$	=27之所有解為	$eta lpha eta eta$,則 $lpha^2 + eta^2$	=?	
	(A) 10	(B) 11	(C) 12	(D) 13	(E) 14
	*	•		•	

背面尚有題目

11.	$\sin(-23^\circ)\sin 367^\circ +$	$\cos 7^{\circ} \sin(-247^{\circ}) = 6$?		
	$(A) \frac{-\sqrt{3}}{2}$	(B) $\frac{-1}{2}$	(C) $\frac{1}{2}$	(D) $\frac{\sqrt{2}}{2}$	$(E) \ \frac{\sqrt{3}}{2}$
12.					
	(A) $\sqrt{2}$	$(B) \ \frac{\sqrt{2}}{2}$	(C) $\frac{\sqrt{2}}{4}$	(D) $\frac{-\sqrt{2}}{4}$	$(E) \frac{-\sqrt{2}}{2}$
13.	若甲乙兩人解方程 -4、2,則原方和	•	,甲看錯 <i>m</i> 解得兩	根為-3、5,乙元	看錯 n 解得兩根為
	$(A) -3 \cdot -4$	$(B) -3 \cdot 2$	(C) $-4 \cdot 5$	(D) 2 · 5	(E) $3 \cdot -5$
14.	ightharpoonup $\frac{x^2 + x - 3}{(x - 1)^2 (x^2 - x + 1)^2}$	$\frac{A}{(x-1)} = \frac{A}{(x-1)} + \frac{B}{(x-1)}$	$\frac{Cx+D}{x^2-x+1} , \not\exists I$	3 =?	
	(A) -7	(B) -5	(C) -3	(D) -1	(E) 2
15.	設直線 L 通過 P(1,				
	(A) 4x - y = 2	(B) $x + 4y = 25$	(C) $2x - y = -4$	(D) $2x + y = 8$	(E) $4x + y = 4$

- 17. 設 $a = \log 2$ 、 $b = \log 3$ 。若x满足 $5^x 6 \cdot 5^{-x} = 1$,則x = ?
 - (A) $\frac{a}{1+b}$ (B) $\frac{b}{1+a}$ (C) $\frac{b}{a}$ (D) $\frac{b}{1-a}$ (E) $\frac{a}{1-b}$
- 18. 函數 $f(x) = \tan^2 x \sec x + 4$ 之最小值為何?
- (A) $\frac{11}{4}$ (B) 3 (C) $\frac{13}{4}$ (D) $\frac{7}{2}$ (E) $\frac{15}{4}$ 19. 設 $f(x) = \sqrt{5-x}$ 、 $g(x) = \frac{1}{\sqrt{3-x}}$,則合成函數 $g \circ f$ 的定義域為何?
- (A) (-4,5] (B) [-4,5) (C) [-4,3) (D) (-4,3] (E) [3,5]
- 20. 若 $\lim_{x \to -2} \frac{x^2 + (a-3)x 3a}{x^2 + 3x + 2} = b$,則 ab = ?(A) 2 (B) 4 (C) 6 (D) 8 (E) 10

A 卷解答

1	2	3	4	5	6	7	8	9	10
D	В	С	A	В	A	С	С	C	A
11	12	13	14	15	16	17	18	19	20
Е	D	Е	D	С	С	D	В	A	Е

選	選擇題:20題單選,每題5分,答錯不倒扣。									
1.	若 f(x) 與 g(x) 附的餘式為何?	余以(x-2)的餘式	分別為5、-2,則($(x^2 - x + 1)f(x) + \epsilon$	(x-3)g(x)除以 $(x-2)$					
	(A) 11	(B) 13	(C) 15	(D) 17	(E) 19					
2.	若a、b均為實	數,且 $ax^2 + bx -$	$5 < 0$ 之解為 $\frac{-1}{2} <$	$x < \frac{5}{3} , \ \text{M} \ a + b =$?					
	(A) -2	(B) -1	(C) 0							
3.		$b_k = 5$, $A_{10} = 5$	、 $b_{11} = -3$,則 $\sum_{k=1}^{10}$	$(5a_k - 4b_k + 3) = ?$						
	(A) 56	(B) 57	(C) 58	(D) 59	(E) 60					
4.	若 $0<\theta<\frac{\pi}{2}$ 且ta	$ \sin\theta + \sec\theta = \frac{3}{2} , \mathbb{R} $	$\sin \theta = ?$							
	(A) $\frac{2}{13}$	(B) $\frac{3}{13}$	(C) $\frac{4}{13}$	(D) $\frac{5}{13}$	(E) $\frac{6}{13}$					
5.	在坐標平面上,	由二元一次聯立不	下等式 $\begin{cases} x \ge 0, \ y \ge -x \\ x + 2y - 2 \le x \\ x + y - 2 \le x \end{cases}$	-2 ≦0所圍成區域的 0	面積為何?					
	(A) 5	(B) 7	(C) 9	(D) 12	(E) 14					
6.	若 $0<\theta<\frac{\pi}{4}$ 且co	$\cos 4\theta = \sin 2\theta$,則	$\tan 2\theta = ?$							
	(A) $\frac{1}{2}$	(B) $\frac{1}{\sqrt{3}}$	(C) 1	(D) $\sqrt{3}$	(E) 2					
7.	若兩圓 $C_1:(x-2)$	$(y+1)^2 = 4$ 與 C_2 :	$(x+2)^2 + (y-2)^2 = k$	相交,則實數 k	的範圍為何?					
	(A) $2 \le k \le 4$	(B) $3 \le k \le 7$	(C) $4 \le k \le 25$	(D) $5 \le k \le 36$	(E) $9 \le k \le 49$					
8.	若兩向量 \bar{a} 、 \bar{b}	的夾角為 $ heta$,且 $ ar{a}$	$ \hat{a} = \vec{b} \cdot \vec{a} + \vec{b} = \sqrt{ \vec{a} }$	$\sqrt{7} \cdot \vec{a} - \vec{b} = \sqrt{2}$,則 $\cos \theta$ =?					
	(A) $\frac{3}{5}$	(B) $\frac{3}{7}$	(C) $\frac{5}{7}$	(D) $\frac{5}{9}$	(E) $\frac{7}{9}$					
9.	若直線 ax + by - 面積為6,則 a=		<0)過點(-3,-1),	且此直線與兩座	標軸圍起來的三角形					
10.			(C) $2 - \sqrt{2}$ -3x + 2 = (x + a)(x + a)							

背面尚有試題

(D) 2

(E) 4

(C) 0

(A) -4

(B) -2

11.		則 <i>x</i> =?						
	(A) $\log_2(1+\sqrt{2})$		(B)	$\log_2(2+\sqrt{2})$		(C)	$\log_2(1+2\sqrt{2})$	
	(D) $\log_2(2+2\sqrt{2})$	$\overline{2}$)	(E)	$\log_2(3+2\sqrt{2})$				
12.	若 $(\log \frac{x}{a})(\log \frac{x}{3}) =$	=2之兩根乘積為6	l ,貝	$\exists a=?$				
	(A) $\frac{3}{61}$	(B) $\frac{4}{61}$	(C)	$\frac{61}{4}$	(D) $\frac{61}{3}$		(E) $\frac{61}{2}$	
13.	設 $b>0$ 。若兩直 的距離為 3 ,則		=0與	$4L_2:8x+ay+$	b=0相互	垂直,	且點 (4,-2) 到]	直線L ₂
	(A) -6	(B) -4	(C)	-2	(D) 2		(E) 4	
14.	點 P(1,-6) 到曲約	$\sqrt{(x-4)^2 + y^2} + \sqrt{(x-4)^2 + y^2}$	$(c+2)^2$	$\frac{1}{(x^2 + y^2)} = 10$ 的最	短距離為何	可?		
	(A) 1	(B) 2	(C)	3	(D) 4		(E) 5	
15.	點 P(0,2) 到曲線	$x^2 - y^2 = 1$ 的最短	距離	≛為何?				
16.	(A) 1 下列何者正確?	(B) $\sqrt{2}$	(C)	$\sqrt{3}$	(D) 2		(E) $\sqrt{5}$	
	(A) $0 < \theta < \frac{\pi}{4} \Rightarrow$	$\cos \theta < \sin \theta$	(B)	$\frac{\pi}{4} < \theta < \frac{\pi}{2} \Rightarrow$	$\tan \theta < \sin \theta$	θ		
	(C) $\frac{\pi}{2} < \theta < \pi \Rightarrow$	$\Rightarrow \sin \theta < \cos \theta$	(D)	$\frac{5\pi}{4} < \theta < \frac{3\pi}{2}$	$\Rightarrow \cos \theta < \sin \theta$	$\sin heta$		
	(E) $\frac{3\pi}{2} < \theta < 2\pi$	$\Rightarrow \tan \theta < \sin \theta$						
17.		$(x+1) \cdot x^2 - 3x - 3x - 3x - 3x + 6$				。若 <i>f</i>	(x) 除以	
	(A) -14	(B) −13	(C)	0	(D) 13		(E) 14	
18.	不等式 $\log_2 x + 6$ (A) $2 < x < 3$	log _x 2<5之解為何		1 < <i>x</i> < 4		(C)	<i>x</i> < 1 或 2 < <i>x</i> < 3	3
	(D) x < 1 或 4 < x	:<8	(E)	<i>x</i> > 8				
19.	若 x, y, z 為實數	,且 $\frac{x-1}{2} = \frac{y+1}{-1} = -\frac{y+1}{-1}$	$\frac{z-2}{3}$,則 x^2+2y^2	+ z ² 的最人	卜值為	何?	
	(A) $\frac{1}{3}$	(B) $\frac{2}{3}$	(C)	1	(D) $\frac{4}{3}$		(E) $\frac{5}{3}$	

20. 若點 P 介於 A(1,1) 、 B(-5,4) 之間且 \overline{AP} : $\overline{BP}=2:1$,則點 P 到直線 4x-3y=1 之距離為何?

(B) $\frac{21}{5}$ (C) $\frac{22}{5}$ (D) $\frac{24}{5}$

(E) 5

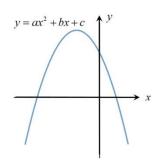
(A) 4

1	2	3	4	5	6	7	8	9	10
D	В	C	D	В	В	Е	D	Е	A
11	12	13	14	15	16	17	18	19	20
Α	D	В	В	С	Е	Е	D	A	С

108 學年度四技新生基礎數學第二次測驗(A卷)

選擇題:20 題單選,每題5分,答錯不倒扣。

1. 求不等式 $x^2 - (\sqrt{x-2})^2 < 4x-2$ 的實數解。


軸長為何? (A) 6

(B) 8

	(A) $-1 < x < 4$	(B) $0 < x < 4$	(C) $1 < x < 4$	(D) $2 \le x < 4$	(E) $x < 1 \le x > 4$
2.	設 $f(x)$ 除以 $(x-2)$	的商為 $Q(x)$,餘	數為 3 ,且 $f(x)$ 於	余以(x-1)的餘數為	1 ,則 Q(1) = ?
	(A) -2	(B) -1	(C) 1	(D) 2	(E) 3
3.	設 $\frac{1}{\alpha}$ 和 $\frac{1}{\beta}$ 為方程式	$\xi x^2 - 2x + 4 = 0$ 的	兩根,則 $\alpha+\beta=?$		
	(A) $\frac{1}{4}$	(B) $\frac{1}{2}$	(C) 2	(D) 4	(E) 8
4.	1 + (1 + 2) + (1 + 2 +	$(3) + \cdots + (1+2+3)$	$+\cdots + 10) = ?$		
	(A) 180	(B) 210	(C) 220	(D) 240	(E) 250
5.	$ \frac{-26x+47}{(x^2+4)(2x-1)^2} $	$\frac{1}{x^2 + 4} = \frac{ax + b}{x^2 + 4} + \frac{c}{2x - 1}$	$+\frac{d}{(2x-1)^2}$,則 d	=?	
	(A) -8	(B) -4	(C) 2	(D) 4	(E) 8
6.	設 $\cos 2\theta = \sin \theta$, ($0 \le \theta \le \pi$,則 \tan	$^{2}\theta = ?$		
	(A) $\frac{1}{3}$	(B) $\frac{1}{2}$	(C) 1	(D) $\frac{4}{3}$	(E) 3
7.	設 ΔABC 中, $\tan \Delta ABC$	$A = \frac{4}{3}$, $\cos B = \frac{12}{13}$	$\frac{1}{2}$,則 $\cos C = ?$		
	(A) $-\frac{56}{65}$	(B) $-\frac{36}{65}$	(C) $-\frac{16}{65}$	(D) $\frac{16}{65}$	(E) $\frac{56}{65}$
8.	$\sin 150^{\circ} - \cos 240^{\circ}$	$-\tan 315^{\circ} = ?$			
	(A) -2	(B) -1	(C) 0	(D) 1	(E) 2
9.	方程式100·x ^{3log x} :	= x ⁵ 之所有實根的	内立方和為何?		
	(A) 1000	(B) 1001	(C) 1010	(D) 1100	(E) 1110
10.	求不等式 $\frac{3\log_3 x}{\log_3 x}$	·+5 -1 ≤1的解。			
	(A) $\frac{1}{27} < x < 3$	$(B) \ \frac{1}{27} \le x < 3$	(C) $3 < x < 9$	(D) $\frac{1}{27} \le x < 9$	(E) $\frac{1}{27} < x < 9$
11.	已知橢圓 $\frac{(x-1)^2}{16}$	$+\frac{(y-1)^2}{25} = 1$ 短軸	的兩頂點為另一村	隋圓□的焦點,且□	「過點(7,1),則Г長

(C) 10 (D) 12 (E) 14

- 12. 若雨圓 C_1 : $(x+1)^2 + (y-2)^2 = 16$ 與 C_2 : $(x-3)^2 + (y+1)^2 = k$ 相切,則 k 可能為何? (C) 49
- 13. 設 $2 \cdot 9^{x-1} + 5 \cdot 3^{x+1} + 2 = 0$ 的兩根為 α 和 β ,則 $\alpha + \beta = ?$
- (B) 3
- (C) 4
- (E) 6
- 14. 設拋物線 $y = ax^2 + bx + c$ 之圖形如下所示,則下列何者正確?

- (A) $b^2 4ac \le 0$ (B) c < 0 (C) ab < 0 (D) 對稱軸為 $x = \frac{b}{2a}$ (E) b < 0
- 15. 已知 ΔABC 中, $\overrightarrow{AB}=<-8,6>$, $\overrightarrow{AC}=<-3,4>$,則 ΔABC 之面積為何?
 - (A) 6
- (B) $\frac{13}{2}$ (C) 7 (D) $\frac{15}{2}$
- (E) 8
- 16. 設 $\vec{a} = <3,1>,\vec{b} = < x,y>$ 為平面上兩向量,且 $x^2 + y^2 = 20$,則 $\vec{a} \cdot \vec{b}$ 的最大值為何?

 - (A) $5\sqrt{2}$ (B) $10\sqrt{2}$ (C) $15\sqrt{2}$ (D) $20\sqrt{2}$
- (E) $25\sqrt{2}$

- 17. 若 $a \cdot b$ 皆為實數,且 $\lim_{x \to 1} \frac{x^2 + ax 3}{x^2 1} = b$,則a + b = ?
 - (A) 4
- (B) 5 (C) 6
- (D) 7
- (E) 8
- 18. 設 a 為實數 , f(x) = 2x + a , g(x) = 3x + 1 。 若 $f \circ g = g \circ f$,則 a = ?
 - (A) $\frac{1}{4}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$

- (E) 2

- 19. $\lim_{h\to 0} \frac{\sqrt{1-2h-1}}{h} = ?$
 - (A) -2 (B) -1 (C) 1
- (D) 2
- (E) 3

- 20. 下列何者為函數 $f(x) = \frac{\sqrt[3]{x-1}}{\sqrt{2x-x^2}-1}$ 的定義域?

- (A) [0,1) (B) (1,2] (C) [0,2] (D) $(2,\infty)$
- (E) $[0,1) \cup (1,2]$

108 學年度四技新生基礎數學第二次測驗解答(A卷)

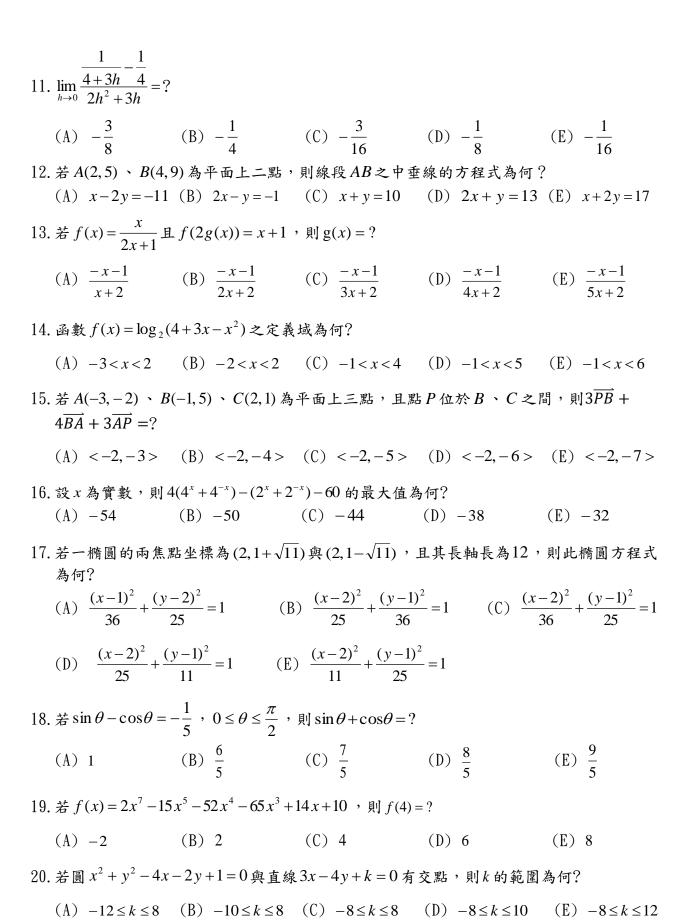
1	2	3	4	5	6	7	8	9	10
D	D	В	C	Е	A	С	Е	D	В
11	12	13	14	15	16	17	18	19	20
D	D	A	Е	С	В	A	С	В	Е

1. 若 $f(x) = x^4 + lx^2 + mx + 9$ 能被 $x^2 - 1$ 整除,則以 x - 2 除 $(x^2 - x + 1)$ f(x) 之餘式為何?

	(A) -60	(B) -54	(C) -51	(D) -48	(E) -45
2.	若 $ x^3 - 12x^2 + 44$	4x - 48 = (x - a)(x - a)	(a-b)(x-c) ,則 $(a-b)(x-c)$	$(a-b)^2 + (a-c)^2 + (a-c)^2$	$(c-b)^2 = ?$
	(A) 20	(B) 22	(C) 24	(D) 26	(E) 28
3.	不等式 $\sqrt{1-x^2}$ <	<2x-1之解為何?			
	(A) $\frac{4}{5} < x \le 1$	$(B) \frac{1}{2} \le x \le 1$	(C) $\frac{4}{5} < x < 1$	$(D) \ \frac{4}{5} \le x \le 1$	(E) $0 < x \le 1$
4.		$+\frac{1}{x+3} , x > -3 ,$	則 $f(x)$ 之最小值	為何?	
	(A) 2	(B) 3	(C) 4	(D) 5	(E) 6
5.	若 (log ax)(log =	3 -)=4之兩根乘積 x	為 $\frac{1}{11}$,則 $a=?$		
	(A) $\frac{3}{11}$	(B) $\frac{4}{11}$	(C) $\frac{11}{3}$	(D) 11	(E) 33
6.	$ ilde{\pi} < au$,且	且滿足 $\sec \theta = -2$,	,則 $\sin(\theta + \frac{\pi}{2}) + c$	$\cos(\frac{3\pi}{2} - \theta) = ?$	
	$(A) -\sqrt{3}$	(B) $\frac{-1-\sqrt{3}}{2}$	(C) 0	(D) $\frac{\sqrt{3}+1}{2}$	(E) $\sqrt{3}$
7.		$\frac{\sin \theta}{-\sin^2 \theta} = 0 \cdot 0 <$	$ heta\!<\!2\pi$,則此方 π	程式的解有幾個?	
	(A) 0	(B) 1	(C) 2	(D) 3	(E) 4
8.		且满足 sin θ + cos	$\theta = \frac{3}{\sqrt{5}}$,則 $\cos 2$	$\theta = ?$	
	(A) $-\frac{4}{5}$	(B) $-\frac{3}{5}$	(C) $-\frac{4}{\sqrt{5}}$	(D) $\frac{3}{5}$	(E) $\frac{4}{5}$
9.		$Q(x, y)$ 為平面上的方向,則 $x^2 + y^2 =$		量PQ的長度為5	5,且與
	(A) 10	(B) 15	(C) 20	(D) 25	(E) 30
1(). 若點(a,b)為直	4x - 3y + 4 = 0	上距離點(3,2)最主	丘的點,則 $a+b=$	=?
	(A) $\frac{23}{5}$	(B) $\frac{24}{5}$	(C) 5	(D) $\frac{26}{5}$	(E) $\frac{27}{5}$
			背面尚有題目		

12. 若圓 $x^2 + y^2 = k$ 具	與直線3x+4y=15>	相切,則 <i>k</i> =?		
(A) 9	(B) 10	(C) 11	(D) 12	(E) 13
13. 點 P(-5, 3) 到曲	$ x + 2 = \sqrt{(x-6)^2}$	+(y-3)2 的最短距离	離為何?	
(A) 6	(B) 7	(C) 8	(D) 9	(E) 10
14. 若 t > 1,則不領	学式 $\log_3 \frac{t}{243} + \log$,81<0的解為何?		
(A) $1 < t < 79$	(B) $1 < t < 80$	(C) $2 < t < 81$	(D) $3 < t < 81$	(E) $3 < t < 82$
15. 若點(2,1)與(2, 何?	7) 為一橢圓的兩分	焦點,且點(1,3)落	在此橢圓上,則	此橢圓的長軸長為
(A) $\sqrt{3} + \sqrt{17}$	(B) $2 + \sqrt{17}$	(C) $\sqrt{5} + \sqrt{17}$	(D) $\sqrt{6} + \sqrt{17}$	(E) $\sqrt{7} + \sqrt{17}$
16. 若 a 、 b 、 c 成	等差數列且三數 <i>之</i>	1和為9,三數之平	· 左方和為59,則山	比三數之積為何?
	(B) -21		(D) 15	(E) 27
17. 設 <i>x</i> 、 <i>y</i> 、z 皆	為正數且 x + 2y +	$z = 3 , \iint \frac{4}{x} + \frac{2}{y} +$	9 一之最小值為何	?
(A) $\frac{49}{3}$	(B) 17	(C) $\frac{101}{3}$	(D) $\frac{113}{3}$	(E) 49
18. 設 $P(a,b) \cdot Q(a,b) \cdot Q(a,b)$ 2 $\overline{PQ} = 3\overline{QR}$,身		平面上三點。若點	iQ介於 P 、 R 之	二間且
		(C) -6	(D) -5	(E) -4
19. 在 ΔABC中 ,若 ∠A=?	ēa、b、c為∠A	、∠B、∠C 所對的	內邊,且 $a^2=b^2$	$+bc+c^2$,則
(A) $\frac{\pi}{4}$	(B) $\frac{\pi}{3}$	(C) $\frac{\pi}{2}$	(D) $\frac{2}{3}\pi$	(E) $\frac{3}{4}\pi$
20. 若方程式 (4 ^x) ² :	=32·2 ^{-x²} 之解為α	lpha 與 eta ,則 $lphaeta$ =?		
		(C) -5	(D) -6	(E) -7

(A) -3 < k < 1 (B) -3 < k < 2 (C) -2 < k < 1 (D) -1 < k < 2 (E) -1 < k < 3


11. 若點 (k,1) 在圓 $x^2 + y^2 - 2x + y - 5 = 0$ 內,則實數 k 的範圍?

1	2	3	4	5	6	7	8	9	10
Е	С	Α	D	E	В	D	В	С	Α
11	12	13	14	15	16	17	18	19	20
E	Α	В	D	С	В	Α	E	D	С

109 學年度四技新生基礎數學第二次測驗(A 卷)

選擇題:20 題單選,每題5分,答錯不倒扣。

1.	若拋物線 $y = x^2 +$					
	(A) 5	(B) 6	(C)	7	(D) 8	(E) 9
2.		$an \theta = \frac{b}{a} , \frac{\pi}{2} < \theta <$	$(\pi,)$	則 $\sin 2\theta = ?$		
	$(A) -\frac{2ab}{c^2}$	$(B) - \frac{ab}{c^2}$	(C)	$\frac{ab}{c^2}$	(D) $\frac{2ab}{c^2}$	$(E)\frac{2ab}{c}$
3.	$\Delta ABC + a \cdot b$	、 <i>c</i> 分別表示 ∠A	` ∠ <i>E</i>	3、∠C 所對	的三邊長。若 a^2	$-(b+c)^2 = -bc$
	則 ∠A=?					
	(A) $\frac{\pi}{6}$	(B) $\frac{\pi}{3}$	(C)	$\frac{2\pi}{3}$	$(D) \frac{3\pi}{4}$	(E) $\frac{5\pi}{6}$
4.	若α、β為方程:	$\sharp 2x^2 - 7x - 3 = 0 \stackrel{>}{>}$	之二根	$ \frac{\alpha}{\beta} + \frac{\beta}{\alpha} $	=?	
	(A) $-\frac{61}{6}$	(B) $-\frac{53}{6}$	(C)	$-\frac{35}{6}$	(D) -5	(E) $-\frac{23}{6}$
5.	$ $ $ $	log 4 ,則 log ₃₆₀ 18	=?			
	$(A)\frac{3a+b}{4a+3b+2}$	$(B) \ \frac{4a+b}{4a+2b+2}$	(C)	$\frac{2a+b}{3a+4b+2}$	$(\mathbb{D}) \ \frac{2a+2b}{3a+3b+2}$	$\frac{3a+2b}{3a+2b+1}$
6.	若實數 x 、 y 滿足	$(x^2 + y^2 - 6x + 4y)$	-12 =	· 0 ,則 4 <i>x</i> +	3v之可能最大值	為何?
		(B) 25				
7.	設 \bar{a} 與 \bar{b} 為平面上	Δ 兩向量, $ heta$ 為 $ar{a}$ 與	$ uar{b}$ 的	夾角。若 <i>ā</i>	$ =3 \cdot \bar{b} =2$ L c	$\cos\theta = \frac{1}{6}$,則
	$ 2\vec{a}-\vec{b} =?$					
	(A) 6	(B) 7	(C)	8	(D) 9	(E) 10
8.	若 $\frac{4x}{x^3 - x^2 - x + 1} =$	$= \frac{a}{x-1} + \frac{b}{(x-1)^2} + \dots$	$\frac{c}{x+1}$,則 <i>a+b+c</i>	=?	
		(B) 0	(C)	2	(D) 4	(E) 6
9.	若 $\lim_{x \to 1} \frac{\sqrt{x+a} - b}{x^2 + x - 2} =$	$=\frac{1}{12}$, $\emptyset a-b=?$				
	(A) -2	(B) -1	(C)	0	(D) 1	(E) 2
10.	滿足不等式 log ₂	3-x ≤2的整數解	有多少	少個?		
	(A) 4	(B) 5	(C)	6	(D) 8	(E) 9

109 學年度四技新生基礎數學第二次測驗答案(A 卷)

1	2	3	4	5	6	7	8	9	10
В	D	С	Α	В	E	Α	С	D	D
11	12	13	14	15	16	17	18	19	20
Е	Е	D	С	Е	Α	В	С	В	Α

選	擇題:20 題單選	建,每題5分,	答錯不倒扣。		
1.	橢圓 $2x^2 + 3y^2 + 4$	x-12y=22 兩焦黑	站的距離為何?		
	(A) $2\sqrt{2}$	(B) $2\sqrt{3}$	(C) 4	(D) $2\sqrt{5}$	(E) $2\sqrt{6}$
2.			而直線 L_2 與直線	x-3y=4垂直。若	告m ₁ 與m ₂ 分別為直
	線 <i>L</i> ₁ 與 <i>L</i> ₂ 之斜率 (A) −5	,則 $m_1 + m_2 = ?$ (B) -4	(C) -3	(D) -2	(E) −1
3.	聯立不等式 $\begin{cases} x-2\\2x+\\x \ge -\end{cases}$	ly+3≤0 y-1≤0 所圍成的			
	(A) $\frac{32}{5}$	(B) $\frac{16}{5}$	(C) $\frac{8}{5}$	(D) $\frac{4}{5}$	(E) $\frac{2}{5}$
4.	$\frac{\cos^2\theta\csc^2\theta-\cos^2\theta}{\cos^2\theta}$	$\frac{d^2\theta - \csc^2\theta + 1}{\theta} = ?$			
	(A) -1	(B) $\cos^2 \theta$	(C) $\csc^2 \theta$	(D) $\cos \theta$	(E) 1
5.	若α及β為log ₅ (:	$(5^x + 125) = \frac{x}{2} + 1 + 16$	$\log_5 6$ 的兩根,則 $lpha$	$\alpha + \beta = ?$	
	(A) 4	(B) 5	(C) 6	(D) 7	(E) 8
6.	若兩向量ū、v的	夾角為 $\frac{\pi}{3}$,且 $ \vec{u} $ =	$=1 \cdot ec{v} = 3$,則	$\vec{u} + \vec{v} = ?$	
	(A) $\sqrt{11}$	(B) $\sqrt{13}$	(C) $\sqrt{15}$	(D) $\sqrt{17}$	(E) $\sqrt{19}$
7.	不等式 $\log_2(x^2 + x)$				
	(A) $-2 < x < 1$ (D) $x < -2$ 或 $x > 1$	` '		<1 (C) $0 < x < 3$	3
8.			$a^4 + b(x+2)^3 + c(x+2)^3 + c(x+2)^4 + b(x+2)^3 + c(x+2)^4 + c(x$	$(x+2)^2 + d(x+2) +$	e,則
	(A) 4	(B) 5	(C) 6	(D) 7	(E) 8
9.	若拋物線 $y = -x^2$				
	(A) $k > 3$	(B) $0 < k < 5$	(C) $k > 1$	(D) $-3 < k < 1$	(E) $k < -3$
10.	已知向量 $\vec{u} = \langle a, a \rangle$ a+b=?	$b\rangle \cdot \vec{v} = \langle 4,2 \rangle \cdot \vec{w}$	$=\langle -1,3\rangle$ 。若 \bar{u} 與	łv平行,且ū與vi	,的內積為12,則
	(A) 36	(B) 37	(C) 38	(D) 39	(E) 40

背面尚有試題

11.		$\frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 9} ,$	則 $A+B-C-D=$?	
	(A) 1	(B) 2	(C) 3	(D) 4	(E) 5
12.	若一雙曲線之兩沒程式為何?	斬進線為3x−4y=	0 及 3x + 4y = 0 , 」	且其中一焦點為(5	,0),則此雙曲線方
	(A) $\frac{x^2}{80} - \frac{y^2}{45} = 1$	(B) $\frac{x^2}{45} - \frac{y^2}{80} = 1$	(C) $\frac{x^2}{9} - \frac{y^2}{16} = 1$	(D) $\frac{x^2}{16} - \frac{y^2}{9} = 1$	(E) $\frac{x^2}{9} - \frac{y^2}{4} = 1$
13.	已知 <i>A</i> 、 <i>B</i> 與 <i>C</i> (斜率為何?	[-2,5] 為平面中三點	點。若向量 $\overrightarrow{CB} = \langle$	$ 4,1\rangle \cdot \overrightarrow{AB} = \langle -1, -1 \rangle$	-9⟩,則直線AC之
	(A) 2	(B) 3	(C) 4	(D) 5	(E) 6
14.	$\log_2(\sqrt{5+\sqrt{24}}-\sqrt{24})$	$\sqrt{5-\sqrt{24}})=?$			
	(A) $\frac{-3}{2}$	(B) $\frac{-1}{2}$	(C) $\frac{1}{2}$	(D) 1	(E) $\frac{3}{2}$
15.		0且 c < 0 ,則拋物			
		第三、四象限 (B)		四象限 (C) 頂!	點在第一象限
	(D) 頂點在第二		頂點在第四象限		
16.	若 $f(n) = \frac{1}{n} - \frac{1}{n+2}$	$\frac{1}{2}$,则 $f(1) + f(2) + \frac{1}{2}$	$+\cdots+f(18)=?$		
	(A) $\frac{523}{380}$	(B) $\frac{527}{380}$	(C) $\frac{531}{380}$	(D) $\frac{533}{380}$	(E) $\frac{537}{380}$
17.	已知 $a^2+b^2=c^2$	$abc \neq 0$ 且 $\sin \theta =$	$\frac{a}{c}$,則下列何者恆	互正確?	
	_	(B) $\tan \theta = \frac{a}{b}$			(E) $\csc \theta = \frac{c}{a}$
18.	已知 $\sin\theta$ – $\cos\theta$ =	$=\frac{1}{3}$, $\Re \sin(2\theta)=$?		
	(A) $\frac{1}{3}$	(B) $\frac{2}{3}$	(C) $\frac{2\sqrt{2}}{3}$	(D) $\frac{8}{9}$	(E) $\frac{2\sqrt{3}}{3}$
19.	若 $\frac{1}{\alpha}$ 和 $\frac{1}{\beta}$ 為方程	式 $x - \frac{2}{x} = -2$ 的雨材	艮,則 $\alpha^3\beta + \alpha\beta^3$ =	= ?	
	(A) -5	(B) -4	(C) -3	(D) -2	(E) -1
20.	不等式(-x+1)(2x	$(x+3)^2(4x-5)^3 > 0 \stackrel{?}{=}$	之解為何?		
	$(A) x > \frac{5}{4} \stackrel{\text{def}}{=} x <$	(B) 1	$1 < x < \frac{5}{4}$	(C) $\frac{-3}{2} < x$	<1
	(D) $x < \frac{-3}{2}$	(E) x	x < -1		

1	2	3	4	5	6	7	8	9	10
E	A	D	A	C	В	В	A	D	A
11	12	13	14	15	16	17	18	19	20
С	D	A	Е	Е	С	Е	D	Е	В

111 學年度四技新生基礎數學第二次測驗(A卷)

選擇題:20 題單選,每題5分,答錯不倒扣。

1. 已知平行四邊	形 ABCD 的頂點坐	票分別為 A(3,7)、 B	$(2,4) \cdot C(a,b) \cdot D($	(9,8),則 $a+b=?$
(A) 11	(B) 12	(C) 13	(D) 14	(E) 15
2. 已知兩向量 证	與 v 的 夾 角 為 2 元 , E	$\mathbb{E} \vec{u} =2\cdot \vec{v} =5$	則 $(\vec{u}-\vec{v})\cdot(\vec{u}+2\vec{v})$	\vec{v}) = ?
(A) -100	(B) -51	(C) 51	(D) 99	(E) 101
 3. 設拋物線 y = x 為何? 	² 與直線 y = -2x+3	相交於 A,B 雨點,	則 \overline{AB} 的中點到直線	3x-4y=7的距離
(A) 5	(B) 6	(C) 7	(D) 8	(E) 9
	$(+2) = 1 + \log(x+1)$, (B) $\sqrt{26}$		(D) $4 + \sqrt{13}$	(E) $4 + \sqrt{26}$
5. 設 $\sin \theta + \cos \theta$ =	$=\frac{\sqrt{6}}{2}$, $\Re \sin 2\theta = 2$			
(A) $\frac{1}{8}$	(B) $\frac{1}{4}$	(C) $\frac{3}{8}$	(D) $\frac{1}{2}$	(E) $\frac{5}{8}$
6. $\lim_{x \to 2} \frac{\frac{1}{x+2} - \frac{1}{x^2}}{x^2 - 3x + 2}$	= ?			
(A) $\frac{1}{6}$	(B) $\frac{3}{17}$	(C) $\frac{3}{16}$	(D) $\frac{1}{5}$	(E) $\frac{3}{14}$
 設α、β為方 	程式 2 ^{2x+5} - 2 ^{x+5} +1=	0 之雨根,則 $\alpha+\beta$? = ?	
(A) -5	(B) -3	(C) 1	(D) 3	(E) 5
* * *	$c^2 + ax + b \stackrel{?}{}{} k x^2 - 1 \stackrel{!}{} $	E 除,則 $f(x) \div (x-2)$	2)的餘式為何?	
(A) 2	(B) 5	(C) 7	(D) 9	(E) 12
9. 不等式 x³ − (√2	$(1-x^2)^2 \le x-3$ 的實	數解為何?		
$(A) -1 \le x \le 2$	2 (B) $-2 \le x \le 1$	$(C) -1 \le x \le 1$	$(D) -2 \le x \le -1$	$(E) 1 \le x \le 2$
(A) 開口向上		(B) 與 y 軸無交點	數,則下列敘述何 ; (0 方程式 a + 2bx - cx ² ;	C) 頂點在第二象限

11.	若 $f(x) = \frac{1}{x}$ 、 $g(x)$	$(x) = x^{\frac{1}{3}} \cdot h(x)$) = 81 -	$-x^2$,則 $f(g(h(x))$)) 的定義域	成為何?	
	(A) [-9,9]		(B) (-	∞,9)		(C) $(-9,\infty)$	1
	(D) $(-\infty, -9] \cup [9,$	$\infty)$	(E) (-	∞ ,-9) \cup (-9,9) \cup	$(9,\infty)$		
12.	1+(1+2)+(1+2+	$4)+\cdots+(1+2)$	2+4+8	$3 + \dots + 1024$) = ?			
	(A) 4081	(B) 4083	((C) 4094	(D) 4096	(E)	4132
13.	下列三角函數值中	中,何者為正	數?				
	(A) $\cos \frac{\pi}{3} \cos \frac{\pi}{4}$	$\sin\frac{\pi}{3}\sin\frac{\pi}{4}$	(B) s	sin 38° cos 57° – cos	38° sin 57°	(C) 2 sin ²	$\frac{9\pi}{8}$ - 1
	(D) $2\cos^2\frac{3\pi}{8} - 1$		(E) –	$\frac{2\tan\frac{5\pi}{8}}{-\tan^2\frac{5\pi}{8}}$			
	已知橢圓方程式為	,	и			為整數。若 /	4(2,b)為橢圓
	上一點,且點 A 到					(77)	_
	(A) 3	(B) 4	((C) 5	(D) 6	(E)	7
15.	若 $ x^4 + x^3 + x^2 - x $	-2 與 $x^3 - 2x^2$	$x^{2} - x + 2$	2的最高公因式為	$x^2 + ax + b$,则 <i>a</i> + <i>b</i> =	?
	(A) -1	(B) 0	((C) 1	(D) 2	(E)	3
16.	$\log_4(\sqrt{3+\sqrt{5}}-\sqrt{3})$	$(3-\sqrt{5})=?$					
	(A) $\frac{1}{8}$	(B) $\frac{1}{6}$	((C) $\frac{1}{5}$	(D) $\frac{1}{4}$	(E)	$\frac{1}{3}$
17.	取適當k值使得圓	$\int x^2 + y^2 - 6x$	+ 2ky +	$+3k^2 = -6 - 4k$ 的	面積最大,	問此時圓面	積為何?
	(A) 5π	(B) 6π	((C) 7π	(D) 8π	(E)	9π
18.		$\frac{+c}{+1}$,則 $a-b$	+c=?	?			
	(A) -1	(B) 2	((C) 3	(D) 4	(E)	5
19.	$\lim_{x \to 5} \frac{\sqrt{x^2 - 7} - 3\sqrt{2}}{x - 5}$	-= ?					
	(A) $\frac{\sqrt{2}}{6}$	(B) $\frac{\sqrt{2}}{2}$	((C) $\frac{5\sqrt{2}}{6}$	(D) $\frac{7\sqrt{2}}{6}$	(E)	$\frac{3\sqrt{2}}{2}$
20.	若 $f(x) = (x+2)^3$	+4且 $f(g(x)$))=x	則 $g(x) = ?$			
	(A) $\sqrt[3]{x-4} - 2$	(B) $\sqrt[3]{x-2}$	-4 ((C) $\sqrt[3]{x+2} - 4$	(D) $\sqrt[3]{x+4}$	$\frac{1}{4} - 2$ (E)	$\sqrt[3]{x+4}+2$

111 學年度四技新生基礎數學第二次測驗解答(A卷)

1	2	3	4	5	6	7	8	9	10
C	В	В	E	D	C	A	D	В	D
11	12	13	14	15	16	17	18	19	20
Е	В	E	E	A	D	A	D	C	A

選擇題:20 題單選,每題5分,答錯不倒扣。

1.	設 $\frac{-1}{2}$ 及 $\frac{3}{3}$ 為6	$x^2 + ax + b = 0$ 的引			
	(A) -10	(B) -8	(C) -6	(D) -4	(E) -2
2.	設圓 $C: x^2 + y^2$	$x^2 - 2x + 2y - 23 = 0$)與直線 <i>ax</i> +3y=l	b相切於點(-3,2),	則 $a+b=?$

(A) 6 (B) 8 (C) 10 (D) 12 (E) 14

3. 不等式 $2^x + 2^{3-x} \le 6$ 之解為何 ? (A) $-2 \le x \le -1$ (B) $-2 \le x \le 1$ (C) $0 \le x \le 3$ (D) $1 \le x \le 2$ (E) $1 \le x \le 3$

4. 設 $0 \le \theta \le \frac{\pi}{2}$,則 $\sqrt{1-\sin\theta} = ?$ (A) $\sin\frac{\theta}{2} - \cos\frac{\theta}{2}$ (B) $\cos\frac{\theta}{2} - \sin\frac{\theta}{2}$ (C) $\sin\frac{\theta}{2} + \cos\frac{\theta}{2}$

(D) $\sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}$ (E) $\cos \theta - \sin \theta$

5. 設兩向量 $\vec{a} \cdot \vec{b}$ 的夾角為 θ ,且 $|\vec{a}| = 2|\vec{b}| \cdot |\vec{a} + \vec{b}| = \sqrt{8} \cdot |\vec{a} - \vec{b}| = \sqrt{2}$,則 $\cos \theta = ?$ (A) $\frac{-3}{4}$ (B) $\frac{-1}{4}$ (C) $\frac{1}{4}$ (D) $\frac{3}{4}$ (E) $\frac{4}{5}$

6. 設A(2,4)、B(5,8)、C(3,2)為平面上三點,則 ΔABC 中 \overline{AB} 邊上高的長度為何?

(A) 2 (B) 3 (C) 4 (D) 5 (E) 6

7. 設a < 0 , b > 0 , c > 0 , 則 $y = ax^2 - 2bx + c$ 的頂點落在何處?
(A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限 (E) Y 軸

8. 設A(6,2)、B(4,6)、C(4,2)、D(3,k)四點在同一圓上,則k之值可能為下列何者?

(A) -1 (B) 0 (C) 1 (D) 2 (E) 3

10. 設 $f(x) = x^3 + x^2 - 7x + k$ 且 $f(1 - \sqrt{2}) = 1$,則 k = ?

(A) -2 (B) -1 (C) 1 (D) 2 (E) 3

背面尚有試題

11.	設 $2^x + 2^{-x} = 3$, 3^x (A) 13	$y + 3^{-y} = 4$,則 2^{2x} (B) 17			(E) 29
12.	設 $\log_2(8a) = x$,	$\log_2 \frac{b}{4} = y , $	$_{2}(ab) = ?$		
	(A) $x + y - 4$	(B) $x + y - 2$	(C) $x + y - 1$	(D) $x+y$	(E) $x + y + 5$
13.	設 $\sin \theta + 3\cos \theta =$	0 ,	$\frac{\ln \theta}{\ln \theta} = ?$		
	(A) $-\frac{7}{9}$	(B) $-\frac{2}{9}$	(C) $\frac{7}{9}$	(D) $\frac{11}{9}$	(E) $\frac{13}{9}$
14.	聯立不等式 $\begin{cases} x^2 > \\ x^2 < \end{cases}$	6-x 之解為何? 3x+4			
		4 (B) (E)		(C) $4 < x$	
15.	設 A(12,-1) 、 B(4	4,5)、 <i>C</i> (7,1) 為平	面上三點,則向量	$\overrightarrow{AB} + 2\overrightarrow{BC} + 3\overrightarrow{CA} =$?
	(A) $\langle 13, -8 \rangle$	(B) $\langle 11, -10 \rangle$	(C) $\langle 11,10 \rangle$	(D) $\langle -10,11 \rangle$	(E) $\langle -8,13 \rangle$
16.	已知 $a_1,,a_{10}$ 為一	等差數列,公差為	$a_{n} = 210$	。若β、a ₁ 、γ三隻	数成一等比數列 ,
	則 $\beta \cdot \gamma = ?$ (A) 4	(B) 9	(C) 16	(D) 25	(E) 36
17.	读 $\frac{2x^3 - 6x^2 + 7x - (x-1)^2(x^2 + 2)}{(x-1)^2(x^2 + 2)}$	$\frac{1}{x-1} = \frac{1}{x-1} + \frac{a}{(x-1)^2}$	$+\frac{x+b}{x^2+2} , \not \boxtimes b^2-a$	$a^2 = ?$	
		(B) -3		(D) 3	(E) 5
18.	設點 (x, y) 滿足聯	立不等式 $\begin{cases} 2 \le x \le 4 \\ y \ge 1 \\ x + y \le 4 \end{cases}$	4 ,則 3x+2y 的最 7	大值為何?	
	(A) 15	(B) 16	(C) 17	(D) 18	(E) 19
19.	已知 $\left\langle a_{\scriptscriptstyle n} ight angle$ 、 $\left\langle b_{\scriptscriptstyle n} ight angle$ 為	丙數列。若 $\sum_{n=1}^{15} a_n$	$=21$, $\sum_{n=1}^{15} (3a_n - 2b)$	$(p_n + 4) = 39$, $\iint \sum_{n=1}^{15}$	$b_n = ?$
		(B) 24		(D) 36	(E) 42
20.	設 $\sin \theta = \frac{3}{5}$,則 $\cot \theta$	$\cos 2\theta = ?$			
	(A) $-\frac{7}{25}$	(B) $-\frac{1}{5}$	(C) $\frac{7}{25}$	(D) $\frac{18}{25}$	(E) $\frac{21}{25}$

1	2	3	4	5	6	7	8	9	10
Е	Е	D	В	D	Α	В	Е	C	A
11	12	13	14	15	16	17	18	19	20
С	С	A	В	A	В	D	D	Е	С

112 學年度四技新生基礎數學第二次測驗(A 卷)

選擇題:20 題單選,每題5分,答錯不倒扣。

1.	若直線L通過(a,3	3)與(4,7),且直線	泉L與直線ax-y=	$=4$ 平行,則直線 $\it L$.的斜率為何?
	(A) -3	(B) -2	(C) -1	(D) 1	(E) 2
2.	若 $f(x) = x^4 + x^3 -$	$6x^2 + x - 7$,	$(\frac{1+\sqrt{5}}{2}) = ?$		
	(A) -10	(B) -7	(C) -3	(D) 3	(E) 7
3.	點 P(4,1) 到拋物線	$\xi x = -y^2 + 2y$ 的最	短距離為何?		
	(A) 1	(B) 2	(C) 3	(D) 4	(E) 5
4.	設函數 $f(x) = \sqrt[3]{2}$	$\frac{x+1}{x+1} + \sqrt{\frac{2+x+x^2-1}{(x-1)^3}}$,則其定義域	區間為何?	
	(A) $(-\infty, -1]$	(B) $(-1,1)$	(C) (1,2]	(D) $[-1,2]$	(E) $[2,\infty)$
5.	若 ΔABC 中 , \overline{AB}	$=7 \cdot \overline{BC} = 5 \cdot \overline{CA} =$	=6,則 cos(<i>∠A</i> +∠	(B) = ?	
	(A) $-\frac{3}{5}$	(B) $-\frac{1}{5}$	(C) $\frac{1}{5}$	(D) $\frac{2}{5}$	(E) $\frac{3}{5}$
6.		$\frac{C}{x} = A + \frac{B}{x} + \frac{C}{x^2} + \frac{Dx}{x^2}$	$\frac{x+E}{x+4}$,则 $A+B+C$	C+D+E=?	
	(A) -5	(B) -4	(C) -3	(D) -2	(E) -1
7.	若方程式3 ^x +3 ^{x+1}	$+3^{x+2} + 3^{x+3} = 7^x + 7^x$	$7^{x+1} + 7^{x+2} + 7^{x+3}$,	則 $\frac{7^x}{3^x}$ = ?	
	(A) $\frac{1}{10}$	(B) $\frac{3}{7}$	(C) 1	(D) $\frac{7}{3}$	(E) 10
8.	設 $0 \le \alpha \le 2\pi$,且	$\tan lpha > 0$ 。若 $lpha$ 為	方程式 sin x+cos	$2x=0$ 的解,則 α	= ?
	(A) $\frac{\pi}{6}$	(B) $\frac{\pi}{3}$	(C) $\frac{7\pi}{6}$	(D) $\frac{4\pi}{3}$	(E) $\frac{11\pi}{6}$
9.	$\sum_{k=1}^{10} (2^k + 2k + 3) = $?			
	(A) 2178	(B) 2180	(C) 2182	(D) 2184	(E) 2186
10.	已知 <i>m</i> >0。若直:	線 y=-mx+b 通過	2點(1,1),則此直約	泉與坐標軸所圍的	三角形面積最小值

背面尚有題目

(A) 2

(B) $2\sqrt{2}$ (C) 3 (D) 4 (E) $4\sqrt{2}$

11.	若 $\lim_{x\to 1} \frac{x^3 + ax^2 + bx}{(x-1)^2}$	$\frac{x+c}{}=3$,則 $a+b$	+ <i>c</i> = ?		
	(A) -2	(B) -1	(C) 0	(D) 1	(E) 2
12.	若 $f(x) = \sqrt{x^3 + 1}$	$g(x) = x^2 - 2$, $p(x) = x^2 - 2$	$n(x) = (\frac{g}{f})(x) , \text{All}$	$(h \circ f)(2) = ?$	
	(A) $\frac{\sqrt{7}}{7}$	(B) $\frac{\sqrt{7}}{5}$	(C) $\frac{\sqrt{7}}{4}$	(D) $\frac{\sqrt{7}}{3}$	(E) $\frac{\sqrt{7}}{2}$
13.	若 α 、 β 為 $2x^2$ –	x+3=0的雨根,	則 $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = ?$		
	(A) $\frac{-11}{9}$	(B) $\frac{-1}{3}$	(C) $\frac{1}{4}$	(D) $\frac{1}{3}$	(E) $\frac{11}{9}$
14.	方程式 $\log_3 x^7 + \log_3 x^7$	$\log_{\frac{1}{2}} x = 24$ 之解為何	1 ?		
	(A) 25	3		(D) 81	(E) 121
15.	若拋物線 y = -(x	$(-1)^2 + 4 與 x 軸 y$	軸之交點分別為 A	$A \cdot B \cdot C$ 三點,則	△ABC 面積為何?
		(B) 3			(E) 12
16.	在xv平面上,满	足不等式 log ₂ (x ² +	- v ² - 5) ≤ 4 的區域	面積為何?	
	(A) 4π			(D) 19π	(E) 21π
17.	$若 \tan 2\theta = -\frac{12}{5}$,	則 $\sin^4 \theta + \cos^4 \theta =$?		
	(A) $\frac{25}{169}$	(B) $\frac{97}{169}$	(C) $\frac{144}{169}$	(D) $\frac{313}{338}$	(E) $\frac{363}{338}$
18.	芸向量Ⅱ=(<i>u, u,</i>)	$\vec{\mathbf{v}} = (-5,12)$, $ \vec{\mathbf{v}} $	$ \hat{\mathbf{l}} = 26$, $ \hat{\mathbf{l}} \cdot \hat{\mathbf{v}} \neq 2$	值為最小,則u,+	$u_2 = ?$
10.		(B) -14	•		(E) -8
19.		$x^2 + y^2 = 1$ 最近的黑			(_)
_,,				_	Q
	(A) $\frac{1}{5}$	(B) $\frac{3}{5}$	(C) 1	(D) $\frac{7}{5}$	(E) $\frac{9}{5}$
20.	$\lim_{x \to 1} \frac{\sqrt{(2x-1)^3} - 1}{4x + \sqrt{2x-1} - 1}$	5 = ?			
	(A) $\frac{1}{3}$	(B) $\frac{3}{8}$	(C) $\frac{3}{7}$	(D) $\frac{1}{2}$	(E) $\frac{3}{5}$

112 學年度四技新生基礎數學第二次測驗解答(A卷)

1	2	3	4	5	6	7	8	9	10
E	A	C	C	В	D	A	C	E	A
11	12	13	14	15	16	17	18	19	20
В	Е	A	D	D	С	В	В	D	E

選擇題:20 題單選,每題 5 分,答錯不倒扣。

(B) -11

(C) -7

(D) -5

2. $\dot{\pi}$ α 、 β 皆為實數 , $\alpha^3 = 2 + \sqrt{5}$, $\beta^3 = 2 - \sqrt{5}$, 則 $\alpha + \beta = ?$

(A) 1

(B) 2 (C) 3

(D) 4

(E) 5

3. 若 $|\vec{a}| = |\vec{b}| = |\vec{a} + \vec{b}| = 1$,則向量 \vec{a} 與 \vec{b} 之夾角為何?

(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$ (E) $\frac{3\pi}{4}$

(A) 25

(B) 30

(C) 35

(D) 40

(E) 45

5. 若 k > 0 且圓 $C: x^2 + y^2 - 12x - 4ky + 36 = 0$ 與直線 x = k 相切,則圓 C 之半徑為何?

(B) 3 (C) 4

(D) 5

6. ΔABC 中,已知 $\overline{AB} = 6$, $\overline{BC} = 4$, $\cos B = -\frac{1}{2}$,則 ΔABC 面積為何?

(A) 3

(B) $3\sqrt{3}$ (C) 6 (D) $4\sqrt{3}$ (E) $6\sqrt{3}$

(A) $\frac{82}{3}$ (B) $\frac{85}{3}$ (C) $\frac{88}{3}$ (D) $\frac{91}{3}$

(E) $\frac{94}{3}$

8. $\stackrel{*}{\approx} \frac{x-5}{x^3-3x^2+4} = \frac{A}{x+1} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$, All A+B+C=?

(B) -1

(C) 1

(D) 2

(E) 7

9. 若拋物線 $y = 2x^2 + ax + b$ 通過(0,7) 與(-2,3) 兩點,則此拋物線之頂點為何?

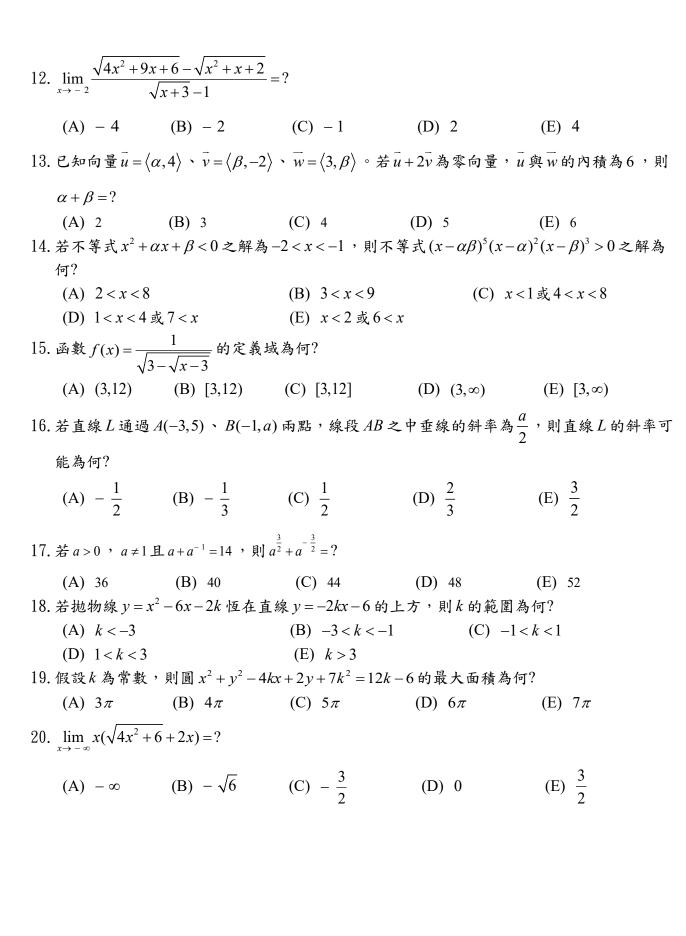
(A) $\left(-\frac{5}{2}, \frac{3}{2}\right)$ (B) $\left(-\frac{3}{2}, \frac{3}{2}\right)$ (C) $\left(-\frac{3}{2}, \frac{5}{2}\right)$ (D) $\left(\frac{3}{2}, \frac{5}{2}\right)$ (E) $\left(\frac{5}{2}, \frac{5}{2}\right)$

10. 不等式 $\frac{(x-2)^{\frac{1}{3}}}{(2x-1)^2(1-x)} > 0$ 之解為何?

(A) x > 2 $\le x < 1$ (B) 1 < x < 2 (C) x > 1 $\le x < \frac{1}{2}$ (D) $\frac{1}{2} < x < 1$ (E) $x < \frac{1}{2}$

背面尚有試題

11.	若 47100 為 168 位數	,則 47 ¹⁷ 為幾位	.數?		
	(A) 27	(B) 28	(C) 29	(D) 30	(E) 31
12.		$\psi \frac{3\pi}{4} < \theta < \pi ,$	則 $\sin(2\theta) = ?$		
	(A) $-\frac{\sqrt{3}}{2}$	(B) $-\frac{1}{2}$	(C) $-\frac{\sqrt{3}}{4}$	(D) $\frac{1}{2}$	(E) $\frac{\sqrt{3}}{2}$
	$\log_3 x + 1$	$\log_9 y^2 - \log_3 10 =$	= 0		
13.	若方程組 $ \frac{27^{\frac{x}{3}}}{3^{y}} = 2^{y} $ (A) 15	7	,則 $x^2 - y^2 = ?$		
	(A) 15	(B) 17	(C) 19	(D) 21	(E) 23
14.	已知 $A(-1,4)$ 、 $B(C$ 上 ,則線段 PD 的		為平面上三點,且	線段 AB 為圓 C	之直徑。若點 P 在圓
	(A) $5 - \sqrt{10}$	(B) $\sqrt{10}$	(C) 5	(D) $5 + \sqrt{10}$	(E) 10
15.	已知 $\langle a_n \rangle$ 為一數列	,且 $\sum_{n=1}^{10} a_n = 100$	$\sum_{n=1}^{20} a_n = 400$, 3	$\sum_{n=1}^{20} (a_n + 2n - 3)$	=?
	(A) 540	(B) 550	(C) 560	(D) 570	(E) 580
16.	設∂為平面上兩向	量a與b的夾角	。若 $ \vec{a} $ =6、 $ \vec{b} $ =4	$4 \cdot 且 \cos \theta = \frac{1}{3}$,則 $ \vec{a}-2\vec{b} =$?
	(A) $2\sqrt{11}$	(B) $2\sqrt{13}$	(C) $2\sqrt{15}$	(D) $2\sqrt{17}$	(E) $2\sqrt{19}$
17.	若平面上有一直線 何?	通過點(8,-1),	且與直線 2x + y =	5垂直,則此直	線與y軸交點座標為
	(A) $(0,5)$	(B) $(0,3)$	(C) $(0,1)$	(D) $(0,-3)$	(E) $(0,-5)$
18.	在座標平面上,由		≥ x-1 +2y≤4 所圍成區 x>0	域的面積為何?	
		(B) 4		(D) 2	(E) 1
19.	若 $2\cos^2\theta - \sin\theta$ -	$-1=0$,則 θ 可	能為下列何者?		
	(A) 0	(B) $\frac{\pi}{6}$	(C) $\frac{\pi}{4}$	(D) $\frac{\pi}{3}$	(E) π
20.	若直線 $ax + 2y = b$ §	與 $\frac{1}{2}x-y=2$ 平 i	亍,且通過點(-5,3	B),則 $a+b=?$	
	(A) 10	(B) 13	(C) 15	(D) 21	(E) 23


1	2	3	4	5	6	7	8	9	10
С	A	D	Е	C	Е	A	В	C	В
11	12	13	14	15	16	17	18	19	20
С	A	D	A	Е	D	Е	D	В	A

113 學年度四技新生基礎數學第二次測驗(A 卷)

選擇題:20題單選,每題5分,答錯不倒扣。

1.	若 $f(x) = 2x + 1$ 且	g(3f(x)) = 6x + 1 ,			
	(A) $x-2$	(B) $x+2$	(C) $3x-2$	(D) $3x-1$	(E) $3x+1$
2.	若m、n為正整	數且1≤ <i>mn</i> ≤8,則	有理數 $\frac{n}{m}$ 有幾個?	(同值只取一個,	例如 $\frac{1}{2}$ 與 $\frac{2}{4}$ 只算一
	個)	(D) 15 /m	(C) 16 M	(D) 17 m	(E) 10 M
3			(C) 16個](f∘g)(x)最小值為		(E) 18個
0.			(C) - 2		(E) 2
4.	若直線 $(\frac{1}{2}-a)x+($	$(a-\frac{9}{2})y+4=0$ 的斜	·率小於0,其中a	為整數,則a有幾	種可能?
	(A) 3	(B) 4	(C) 5	(D) 6	(E) 7
5.		$\frac{f(1)}{f(1)} = 2$,則 $\lim_{h \to 0} \frac{f(1)}{f(1)}$	$\frac{f(1-3h)-f(1)}{h} = ?$		
	(A) -6	(B) -3	(C) 0	(D) 3	(E) 6
6.	若 $\tan \frac{\alpha}{2} = 2$,則 s	$\sin 2\alpha = ?$			
	(A) $-\frac{24}{25}$	(B) $-\frac{16}{25}$	(C) $\frac{12}{25}$	(D) $\frac{16}{25}$	(E) $\frac{24}{25}$
7.		$+\frac{b}{x-1}+\frac{c}{(x-1)^2}$, $\downarrow \downarrow$	a-b-c=?		
	(A) -4	(B) -3	(C) – 2	(D) -1	(E) 2
8.		$\frac{s\theta}{1} = 0 , \pi < \theta < 2\pi$,則 $\sin^2\theta - 2\sin\theta - 1$	l = ?	
	(A) $-\frac{7}{4}$	(B) $-\frac{3}{4}$	(C) $\frac{1}{4}$	(D) $\frac{5}{4}$	(E) $\frac{9}{4}$
9.	若 $\log_x a = 3$, $\log_x a = 3$	$a_x b = 5$, $\log_x c = 7$,	則 $\log_{abc} x = ?$		
	(A) $\frac{1}{105}$	(B) $\frac{1}{75}$	(C) $\frac{1}{30}$	(D) $\frac{1}{15}$	(E) $\frac{1}{5}$
10.	若 f(x) 除以(x²-	1) 餘 2x+1,除以((x-2)餘2,則 $f(x)$	除以 (x^2-x-2) 的包	涂式為何?
	(A) $-x-4$	(B) $x-4$	(C) <i>x</i>	(D) $x+4$	(E) $2x-2$
11.	解方程式 log ₂ (x-	$-1) - \log_4(x^2 - x - 4) =$	$\frac{1}{2} , \not \mid x = ?$		
	(A) $\frac{3}{2}$	(B) 2	(C) $\frac{5}{2}$	(D) 3	(E) $\frac{7}{2}$

背面尚有題目

113 學年度四技新生基礎數學第二次測驗解答(A卷)

1	2	3	4	5	6	7	8	9	10
A	D	C	В	A	A	E	C	D	C
11	12	13	14	15	16	17	18	19	20
D	В	В	Е	В	A	E	D	Е	С